FIRST AND SECOND MOMENT OF AREAS 91Table 7.1 Summary of standard results of the second moments of areas of regular sectionsShape Position of axis Second moment
of area,IRadius of
gyration,kRectangle
lengthd
breadthb(1) Coinciding withb(2) Coinciding with d(3) Through centroid, parallel tob(4) Through centroid, parallel todbd^3
3db^3
3bd^3
12db^3
12d √ 3 b √ 3 d √12b
√
12Triangle
Perpendicular
heighth
baseb(1) Coinciding withb(2) Through centroid, parallel
to base(3) Through vertex, parallel to basebh^3
12dh^3
36bh^3
4h
√
6
h
√
18h
√
2Circle
radiusr
diameterd(1) Through centre perpendicular
to plane (i.e. polar axis)(2) Coinciding with diameter(3) About a tangentπr^4
2orπd^4
32πr^4
4orπd^4
645 πr^4
4or5 πd^4
64r √ 2 r 2 √ 5 2rSemicircle
radiusrCoinciding with diameterπr^4
8r
2IGG=dh
3
12 whered=^40 .0mmandh=^15 .0mmHence IGG=
( 40. 0 )( 15. 0 )^3
12
=11250 mm^4From the parallel axis theorem,
IPP=IGG+AH^2 ,where A= 40. 0 × 15. 0 =600 mm^2
and H= 25. 0 + 7. 5 = 32 .5mm,the perpendicular distance betweenGGandPP.Hence IPP= 11250 +( 600 )( 32. 5 )^2=645000 mm^4IPP=AkPP^2 , from which,kPP=√
IPP
area=√(
645000
600)= 32 .79 mm