176 MECHANICAL ENGINEERING PRINCIPLESqqPP sin q
P cos qFigure 15.11
The components formg are shown by the phasor
diagram of Figure 15.4, and the components forP
are shown by the vector diagram of Figure 15.11.
Resolving forces down the plane gives:
Pcosθ+mgsinθ=F( 15. 15 )Resolving forces perpendicular to the plane gives:
Forces up=forces downN+Psinθ=mgcosθ( 15. 16 )and F=μN ( 15. 17 )
Substituting equation (15.17) into equation (15.15)
gives:
Pcosθ+mgsinθ=μNfrom which, N=
Pcosθ
μ+mgsinθ
μ( 15. 18 )From equation (15.16),
N=mgcosθ−Psinθ( 15. 19 )Equating equations (15.18) and (15.19) gives
Pcosθ
μ +mgsinθ
μ =mgcosθ−Psinθi.e. Pcos 15
°
0. 3 +25 × 9 .81 sin 15°
0. 3
= 25 × 9 .81 cos 15°−Psin 15°3. 22 P+ 211. 6 = 236. 9 − 0. 259 PP( 3. 22 + 0. 259 )= 236. 9 − 211. 63. 479 P= 25. 3from which, forceP=
25. 3
3. 479= 7 .27 NProblem 11. If in Problem 9, the contact
surfaces were greased, so that the value ofμ
decreased andP=50 N, determine the
value ofμwhich will just cause motion
down the plane.The primary forces for this problem are shown in
Figure 15.12, where it can be seen thatFis opposite
to the direction of motion.FN
mgP= 50 NMotionqqFigure 15.12Resolving forces perpendicular to the plane gives:Forces ‘up’=forces ‘down’N=mgcosθ+Psinθ( 15. 20 )Resolving forces parallel to the plane gives:mgsinθ=F+Pcosθ( 15. 21 )and F=μN ( 15. 22 )Substituting equation (15.22) into equation (15.21)
gives:mgsinθ=μN+Pcosθ( 15. 23 )Substituting equation (15.20) into equation (15.23)
gives:mgsinθ=μ(mgcosθ+Psinθ)+Pcosθi.e. 25× 9 .81 sin 15°=μ( 25 × 9 .81 cos 15°
+50 sin 15°)+50 cos 15°Hence 63. 48 =μ( 236. 89 + 12. 94 )+ 48. 3
63. 48 − 48. 3 =μ× 249. 83from which, μ=15. 18
249. 83= 0. 061