MOTION IN A CIRCLE 183
h=vertical distance of the centre of gravity
of the car from the ground,
L=distance between the centre of the tyres,
r=radius of the turning circle, and
μ=coefficient of friction.
o
mg
h
L
r CG
R 1 R 2
F 1 F 2
CF
Figure 16.2
Problem 1. Determine expressions for the
frictional forcesF 1 andF 2 of Figure 16.2.
Hence determine the thrust on each tyre.
Resolving forces horizontally gives:
F 1 +F 2 =CF=
mv^2
r
( 16. 2 )
Resolving forces vertically gives:
R 1 +R 2 =mg ( 16. 3 )
Taking moments about the ‘outer’ wheel gives:
CF×h+R 1 ×L=mg
L
2
i.e.
mv^2
r
h+R 1 L=mg
L
2
or R 1 L=mg
L
2
−
mv^2
r
h
Hence, R 1 L=m
(
gL
2
−
v^2 h
r
)
from which, R 1 =
m
L
(
gL
2
−
v^2 h
r
)
( 16. 4 )
Also, F 1 =μR 1 andF 2 =μR 2 ( 16. 5 )
Substituting equation (16.4) into equation (16.3)
gives:
m
L
(
gL
2
−
v^2 h
r
)
+R 2 =mg
Therefore,
R 2 =mg−
m
L
(
gL
2
−
v^2 h
r
)
=mg−
mg
2
+
m
L
v^2 h
r
i.e. R 2 =
m
L
(
gL
2
+
v^2 h
r
)
( 16. 6 )
From equations (16.4) to (16.6):
F 1 =μ
m
L
(
gL
2
−
v^2 h
r
)
( 16. 7 )
and F 2 =μ
m
L
(
gL
2
+
v^2 h
r
)
( 16. 8 )
To calculate the thrust on each tyre:
From Pythagoras’ theorem,
T 1 =
√
F 12 +R^21 =
√
μ^2 R^21 +R^21
i.e. T 1 =R 1 ×
√
1 +μ^2 (see Figure 16.3(a))
Letα 1 =angle of thrust,
i.e. α 1 =tan−^1
(
F 1
R 1
)
=tan−^1 μ
From Figure 16.3(b), T 2 =R 2 ×
√
1 +μ^2
α 2 =tan−^1
(
F 2
R 2
)
=tan−^1 μ