MOTION IN A CIRCLE 183h=vertical distance of the centre of gravity
of the car from the ground,
L=distance between the centre of the tyres,
r=radius of the turning circle, and
μ=coefficient of friction.omghLr CGR 1 R 2F 1 F 2CFFigure 16.2
Problem 1. Determine expressions for the
frictional forcesF 1 andF 2 of Figure 16.2.
Hence determine the thrust on each tyre.Resolving forces horizontally gives:
F 1 +F 2 =CF=mv^2
r( 16. 2 )Resolving forces vertically gives:
R 1 +R 2 =mg ( 16. 3 )Taking moments about the ‘outer’ wheel gives:
CF×h+R 1 ×L=mgL
2i.e.
mv^2
rh+R 1 L=mgL
2or R 1 L=mg
L
2−mv^2
rhHence, R 1 L=m
(
gL
2−v^2 h
r)from which, R 1 =
m
L(
gL
2−v^2 h
r)( 16. 4 )Also, F 1 =μR 1 andF 2 =μR 2 ( 16. 5 )Substituting equation (16.4) into equation (16.3)
gives:m
L(
gL
2−v^2 h
r)+R 2 =mgTherefore,R 2 =mg−m
L(
gL
2−v^2 h
r)=mg−mg
2+m
Lv^2 h
ri.e. R 2 =m
L(
gL
2+v^2 h
r)( 16. 6 )From equations (16.4) to (16.6):F 1 =μm
L(
gL
2−v^2 h
r)
( 16. 7 )and F 2 =μm
L(
gL
2+v^2 h
r)
( 16. 8 )To calculate the thrust on each tyre:
From Pythagoras’ theorem,T 1 =√
F 12 +R^21 =√
μ^2 R^21 +R^21i.e. T 1 =R 1 ×√
1 +μ^2 (see Figure 16.3(a))Letα 1 =angle of thrust,i.e. α 1 =tan−^1(
F 1
R 1)=tan−^1 μFrom Figure 16.3(b), T 2 =R 2 ×√
1 +μ^2α 2 =tan−^1(
F 2
R 2)=tan−^1 μ