74 MECHANICAL ENGINEERING PRINCIPLESIt is negative, because as the left of the section tends
to slide downwards the right of the section tends
to slide upwards. (Remember, right hand down is
positive).
For the rangeAtoD, see Figure 6.12.
5 kNARA= 8.6 kNC
2 mxFigure 6.12
Bending moment (BM)
At any distancexbetweenAandD
M=− 5 ×x+RA×(x− 2 )=− 5 x+ 8. 6 (x− 2 )=− 5 x+ 8. 6 x− 17. 2i.e. M= 3. 6 x− 17. 2 ( 6. 9 )
(a straight line betweenAandD)
At A,x=2m,MA= 3. 6 × 2 − 17. 2
= 7. 2 − 17. 2 =−10 kN mAt D,x=4m,MD= 3. 6 × 4 − 17. 2
= 14. 4 − 17. 2 =− 2 .8kNmShearing force (SF)
At any distancexbetweenAandD,
F=−5kN+ 8 .6kN= 3 .6kN(constant)
( 6. 10 )For the rangeDtoB, see Figure 6.13.
5 kNRA= 8.6 kNAD6 kN2 m 2 m
xFigure 6.13
Bending moment (BM)At x,M=− 5 ×x+ 8. 6 ×(x− 2 )− 6 ×(x− 4 )=− 5 x+ 8. 6 x− 17. 2 − 6 x+ 24i.e. M=− 2. 4 x+ 6. 8 ( 6. 11 )(a straight line betweenDandB)At D,x=4m,thereforeMD=− 2. 4 × 4 + 6. 8=− 9. 6 + 6. 8i.e. MD=− 2 .8kNmAt B,x=7m,thereforeMB=− 2. 4 × 7 + 6. 8=− 16. 8 + 6. 8i.e. MB=−10 kN mShearing force (SF)Atx, F=− 5 + 8. 6 − 6=− 2 .4kN(constant) ( 6. 12 )For the rangeBtoE, see Figure 6.14.C E5 kN 10 kNx
8 mFigure 6.14Bending moment (BM)
In this case it will be convenient to consider only
the resultant of the couples to the right ofx (−
remember that only one side need be considered,
and in this case, there is only one load to the right
ofx).At x,M=− 10 ×( 8 −x)=− 80 + 10 x ( 6. 13 )Equation (6.13) can be seen to be a straight line
betweenBandE.
AtB,x=7 m, thereforeMB=− 80 + 10 × 7
=−10 kN m
AtE,x=8 m, thereforeME=− 80 + 10 × 8
=0kNmShearing force (SF)Atx,F=+ 10 kN(constant) ( 6. 14 )