BENDING MOMENT AND SHEAR FORCE DIAGRAMS 7500(a) BM diagram (kN m)(b) SF diagram (kN)0 xxM
FAAD BB0 EE
D
− 10− 10+ 10 + 10
+3.6 +3.6− 5 −2.4 −2.4−2.8CFigure 6.15
Equation (6.14) is positive because the shearing
force is causing the right side to slide downwards.
The bending moment and shearing force diagrams
are plotted in Figure 6.15 with the aid of equa-
tions (6.7) to (6.14) and the associated calculations
atC,A,D,BandE.
Problem 3. Determine expressions for the
bending moment and shearing force
distributions for the beam of Figure 6.16.
Hence, sketch the bending moment and
shearing force diagrams.15 kN m2 m 2 m 3 m 1 m30 kN mABDCE10 kNRA RBFigure 6.16Firstly, it will be necessary to calculate the reactions
RAandRB.
Taking moments aboutBgives:
15 kN m+RA×5m+10 kN×1m=30 kN mi.e. 5 RA= 30 − 10 − 15 = 5
from which, RA=
5
5=1kNResolving forces vertically gives:
RA+RB=10 kNi.e. 1 +RB= 10
from which, RB= 10 − 1 =9kN
15 kN mCxFigure 6.17For the spanCtoA, see Figure 6.17.Bending moment (BM)
At x, M=15 kN m(constant) ( 6. 15 )Shearing force (SF)
At x=0, F=0kN ( 6. 16 )For the spanAtoD, see Figure 6.18.2 m15 kN mRA= 1 kNA
CxFigure 6.18
Bending moment (BM)
At x, M=15 kN m +RA×(x− 2 )
= 15 + 1 (x− 2 )= 15 +x− 2i.e. M= 13 +x(a straight line) (6.17)
AtA,x=2 m, thereforeMA= 13 + 2 =15 kN m
AtD,x=4 m, thereforeMD(−)= 13 + 4
=17 kN m
Note thatMD(−)means thatMis calculated to the
left ofDShearing force (SF)
At x, F=1kN(constant) ( 6. 18 )For the spanDtoB, see Figure 6.19.C15 kN m 30 kN mAD
1 kN
2 m 2 m
xFigure 6.19