Geometry: An Interactive Journey to Mastery

(Greg DeLong) #1

Lesson 22: Explorations with Pi


3URYLQJWKDWSLLVWKHVDPHIRUDOOFLUFOHVYLDVLPLODUWULDQJOHV.
7KHIDFWWKDWʌKDVWKHVDPHYDOXHIRUDOOFLUFOHVLVDORJLFDO
FRQVHTXHQFHRIWKH6$6SULQFLSOHLQÀDWJHRPHWU\7RVHH
why, imagine that we have two circles, one of radius r and
the other of radius kr for some number k.
First, approximate each circle as a union of 12 congruent
triangles, as shown in )LJXUH.
D௘ͽ ([SODLQZK\WKHDQJOHDWWKHFHQWHURIWKHFLUFOHIRUHDFKWULDQJOHLVƒ
E௘ͽ ([SODLQZK\HDFKWULDQJOHLQWKH¿JXUHRQWKHOHIWLVVLPLODUWRHDFKWULDQJOHLQWKH¿JXUHRQWKHULJKW
with scale factor k.
F௘ͽ ([SODLQZK\WKHSHULPHWHURIWKHULJKW¿JXUH²FRPSRVHGRIWKHEDVHVRIWULDQJOHV²LVk times the
SHULPHWHURIWKHOHIW¿JXUH
G௘ͽ ([SODLQZK\WKHSHULPHWHUWRGLDPHWHUUDWLRLVWKHVDPHIRUHDFK¿JXUHͼ௘+LQW7KLQNRIGLDPHWHUDV
WZLFHWKHUDGLXV௘ͽ
H௘ͽ ,QVWHDGRIXVLQJWULDQJOHVVXSSRVHWKDWZHDSSUR[LPDWHGWKHWZRFLUFOHVXVLQJWULDQJOHVHDFK
:RXOGWKHSHULPHWHUWRGLDPHWHUUDWLRDJDLQEHWKHVDPHIRUHDFK¿JXUH":KDWLILQVWHDGZHXVHG
WULDQJOHVRUWULDQJOHV":RXOGWKHSHULPHWHUWRGLDPHWHUUDWLRIRUHDFK¿JXUH
agree every time?
I௘ͽ ,QWKHOLPLWRIXVLQJPRUHDQGPRUHWULDQJOHVGRHVLWVHHPUHDVRQDEOHWRFRQFOXGHWKDWWKHSHULPHWHU
to-diameter ratio for the two original circles would still be the same for each?

r

kr

Figure 22.19
Free download pdf