Lesson 22: Explorations with Pi
3URYLQJWKDWSLLVWKHVDPHIRUDOOFLUFOHVYLDVLPLODUWULDQJOHV.
7KHIDFWWKDWʌKDVWKHVDPHYDOXHIRUDOOFLUFOHVLVDORJLFDO
FRQVHTXHQFHRIWKH6$6SULQFLSOHLQÀDWJHRPHWU\7RVHH
why, imagine that we have two circles, one of radius r and
the other of radius kr for some number k.
First, approximate each circle as a union of 12 congruent
triangles, as shown in )LJXUH.
Dͽ ([SODLQZK\WKHDQJOHDWWKHFHQWHURIWKHFLUFOHIRUHDFKWULDQJOHLV
Eͽ ([SODLQZK\HDFKWULDQJOHLQWKH¿JXUHRQWKHOHIWLVVLPLODUWRHDFKWULDQJOHLQWKH¿JXUHRQWKHULJKW
with scale factor k.
Fͽ ([SODLQZK\WKHSHULPHWHURIWKHULJKW¿JXUH²FRPSRVHGRIWKHEDVHVRIWULDQJOHV²LVk times the
SHULPHWHURIWKHOHIW¿JXUH
Gͽ ([SODLQZK\WKHSHULPHWHUWRGLDPHWHUUDWLRLVWKHVDPHIRUHDFK¿JXUHͼ+LQW7KLQNRIGLDPHWHUDV
WZLFHWKHUDGLXVͽ
Hͽ ,QVWHDGRIXVLQJWULDQJOHVVXSSRVHWKDWZHDSSUR[LPDWHGWKHWZRFLUFOHVXVLQJWULDQJOHVHDFK
:RXOGWKHSHULPHWHUWRGLDPHWHUUDWLRDJDLQEHWKHVDPHIRUHDFK¿JXUH":KDWLILQVWHDGZHXVHG
WULDQJOHVRUWULDQJOHV":RXOGWKHSHULPHWHUWRGLDPHWHUUDWLRIRUHDFK¿JXUH
agree every time?
Iͽ ,QWKHOLPLWRIXVLQJPRUHDQGPRUHWULDQJOHVGRHVLWVHHPUHDVRQDEOHWRFRQFOXGHWKDWWKHSHULPHWHU
to-diameter ratio for the two original circles would still be the same for each?
r
kr
Figure 22.19