Lesson 31: The Mathematics of Fractals
The Mathematics of Fractals
Lesson 31
Topics
x 7KHGH¿QLWLRQRIDIUDFWDODQGIUDFWDOGLPHQVLRQ
x 6LHUSLĔVNL¶VWULDQJOHPDWDQGVSRQJH
x 7KH.RFKVQRZÀDNH
x Applications in the natural world.
'H¿QLWLRQV
x fractal$JHRPHWULF¿JXUHZLWKWKHSURSHUW\WKDWLWFDQEHGLYLGHGLQWRD¿QLWHQXPEHURIFRQJUXHQW
SDUWVHDFKDVFDOHGFRS\RIWKHRULJLQDO¿JXUH
x fractal dimension: If a fractal is composed of N parts, each a scaled copy of the original fractal with
scale factor k, then its fractal dimension is the number d so that kd (^) N^1.
Formula
x geometric series formula:
NN11 1 NN^23 "^1 1 for whole numbers N t 2.
Summary
)UDFWDOVDUHJHRPHWULFREMHFWVWKDWOLHLQEHWZHHQEHLQJDOHQJWKͼGLPHQVLRQͽRUDQDUHDͼGLPHQVLRQͽRU
LQEHWZHHQEHLQJDQDUHDͼGLPHQVLRQͽRUDYROXPHͼGLPHQVLRQͽ,QWKLVOHVVRQZHFRQVWUXFWH[DPSOHVRI
IUDFWDOVH[SORUHZKDWWKHWHUP³IUDFWLRQDOGLPHQVLRQ ́PHDQVDQGVXUYH\VRPHRFFXUUHQFHVRIIUDFWDOOLNH
objects in the natural world.
Example 1
In what way does the Figure 31.1 illustrate the geometric series
formula for N = 3?
Figure 31.1