Geometry: An Interactive Journey to Mastery

(Greg DeLong) #1



  1. i. Label the lengths a, b, x, y, z as shown in Figure S.8.2.
    ii. Triangles FUM and LUMDUHULJKWWULDQJOHVͼ௘ZLWKULJKWDQJOHDWU௘ͽ
    because UFAUM.
    iii. axyz    and byz  because RIWKH3\WKDJRUHDQ
    theorem.
    iv. a! b because x + y! y.
    That is, FM! LM.

  2. i. Label angles a 1 , a, b, c, d, e as shown in Figure S.8.3.
    ii. a 1 = a because given.
    iii. e = a and d = a 1 because alternate interior angles for
    parallel lines.
    iv. d = a because of the previous two steps.
    v. d + c EHFDXVHUBAYB.
    vi. a + b EHFDXVHVDPHVLGHLQWHULRUDQJOHVDGGWRƒ
    vii. cdba   DQG   because of algebra.
    viii. b = c because a = d from step 4.
    That is, ‘#‘YUB RBU.

  3. i. Label angle w as shown in Figure S.8.4.
    ii. z + w EHFDXVHRQDVWUDLJKWOLQH
    iii. x + y + w EHFDXVHƒLQDWULDQJOH
    iv. zwxyw    DQG  because of algebra.
    Y 6Rz = x + y.


F


U


L


M


a
b

x

y
z
Figure S.8.2

R

Y


U


B


a 1 a (^2) b
e d c
Figure S.8.3
x
y
w z
Figure S.8.4

Free download pdf