Solutions
- Dͽ &HQWHU PLGSRLQW ͼͽ
Radius =^1122 AB ^2212
(TXDWLRQͼxíͽ^2 ͼyíͽ^2 = 5.
Eͽ
22
22
22
6 8 18 77 0
6 9 18 81 5
395.
xx yy
xx y y
xx y y
xy
It’s the same equation.
Fͽ
2211 2 2
11222211 2 2 22
11 2 2 11 2 2 11 2 2
1122 2 2 1 1^22 11 2 22 2 22
112 2
0
0
2222
^22
2
xa xb ya yb
xabxabyabyab
xyab a b ab a b abab
xyab a b a b aba b ab
xyab a
§·§ ·§·§· ̈ ̧ ̈ ̧ ̈ ̧ ̈ ̧
©¹© ¹©¹©¹
§·§ · ̈ ̧ ̈ ̧
©¹© ¹
§· ̈ ̧
©¹
2 2 1122 2 2.
§· ̈ ̧b aba b
©¹
This is a circle with center ©¹§· ̈ ̧aba b112 2 22 ,, the midpoint, and radius^
1122 2 2
ab 2 a b,
which is half the distance of AB, as hoped.
Lesson 21
- Recall that the diagonals of a rhombus bisect one another and
are perpendicular.
Suppose that their lengths are 2a and 2b, as shown
in Figure S.21.1.
We see four right triangles, each with base a and height b,
so the area of the rhombus is u^1122 ab ab a b
a
b a
b
Figure S.21.1