Geometry: An Interactive Journey to Mastery

(Greg DeLong) #1
The area of the inner square is
2 2 2 2
2
2
2
2
2

1 11


1


(^11)
(^1).
1
xab xx x
x
xx
x
x


 §· ̈ ̧ ̈ ̧ 


©¹


§· ̈ ̧


©¹








Lesson 29



  1. %HFDXVHRSSRVLWHIDFHVRIDVWLFNRIEXWWHUDUHSDUDOOHODQ\FURVVVHFWLRQ
    that intersects a pair of opposite faces has a pair of parallel sides.
    Thus, all cross sections are parallelograms—or trapezoids if the slicing
    SODQHLQWHUFHSWVDVTXDUHHQGRIWKHEXWWHUDVVKRZQLQFigure S.29.1.
    ͼ௘$FWXDOO\FURVVVHFWLRQVFRXOGEHWULDQJXODUWRR'R\RXVHHKRZ"௘ͽ

  2. ,WLV)ROORZSUHFLVHO\WKHVDPHDUJXPHQWGLVFXVVHGLQWKHOHVVRQJLYHQE\LQVHUWLQJWZRVSKHUHVLQWKH
    cylinder that each just touch the plane of the cross section.

  3. 6XSSRVHWKDWDSRLQWP ͼ௘x, y௘ͽLVRQDQHOOLSVHZLWKIRFL
    F ͼ௘íc௘ͽDQGG ͼ௘c௘ͽVDWLVI\LQJFP + PG = k, for some
    QXPEHUk.1RWLFHE\WKHWULDQJXODULQHTXDOLW\WKDWFP + PG!
    FG. That is, k! 2 c6HHFigure S.29.2.
    The equation FP + PG = k reads
    xc y ^2222 xc y k.
    Rewrite this as
    xc y k  ^2222 xc y,
    DQGVTXDUHHDFKVLGHWRREWDLQ
    xc y k xc y  ^22222 2 2.k xc y 2


Figure S.29.1

P ͼx, yͽ
íC C

Figure S.29.2
Free download pdf