Science - USA (2021-12-24)

(Antfer) #1

in our work provides structural evidence for
the RNA channeling hypothesis ( 20 ). How-
ever, contradictory to previous assumptions
that Pol IV RNA has to be completely re-
leased from the Pol IV RNA exit channel in
a5′-to-3′direction to expose the 3′terminus
for RDR2 engagement ( 20 , 51 ), we found that
the Pol IV RNA is threaded inside of the two-
RNA-polymerase complex through the inter-
polymerase RNA channel in a 3′-to-5′direction
to the RDR2 active center, where the 3′terminus
of Pol IV RNA is directly captured and used
as the template for RDR2 RNA synthesis.
The backtracking-triggered RNA channeling
model suggests that RDR2 pulls and releases
Pol IV RNA in a 3′to 5′direction from the Pol
IV secondary channel, and thus represents a
previously undescribed means of transcription
termination by Pol IV, a dsRNA-induced ter-
mination (Fig. 6). This termination mode is
distinct from all previous transcription termi-
nation models ( 52 , 53 ). The dsRNA-induced
termination model predicts that Pol IV RNA
production should be hindered if Pol IV is un-
coupled from RDR2; this prediction is sup-
ported by previous in vivo RNA-seq results
which showed that Pol IV RNA production is
impaired in RDR2 mutants ( 6 , 8 , 20 ), and by
a previous in vitro transcription study which
showed that Pol IV is unable to terminate
properly if RDR2 RNA transcripts are not
detected ( 20 ).


REFERENCES AND NOTES



  1. R. G. Roeder, W. J. Rutter,Nature 224 , 234–237 (1969).

  2. Y. Onoderaet al.,Cell 120 , 613–622 (2005).

  3. A. J. Herr, M. B. Jensen, T. Dalmay, D. C. Baulcombe,Science
    308 , 118–120 (2005).

  4. T. Kannoet al.,Nat. Genet. 37 , 761–765 (2005).

  5. D. Pontieret al.,Genes Dev. 19 , 2030–2040 (2005).

  6. J. Zhaiet al.,Cell 163 , 445–455 (2015).

  7. T. Blevinset al.,eLife 4 , e09591 (2015).

  8. S. Liet al.,Genome Res. 25 , 235–245 (2015).

  9. A. T. Wierzbicki, J. R. Haag, C. S. Pikaard,Cell 135 , 635– 648
    (2008).

  10. A. T. Wierzbicki, T. S. Ream, J. R. Haag, C. S. Pikaard,
    Nat. Genet. 41 , 630–634 (2009).

  11. M. El-Shamiet al.,Genes Dev. 21 , 2539–2544 (2007).

  12. M. A. Matzke, T. Kanno, A. J. Matzke,Annu. Rev. Plant Biol. 66 ,
    243 – 267 (2015).

  13. H. Zhang, Z. Lang, J. K. Zhu,Nat. Rev. Mol. Cell Biol. 19 ,
    489 – 506 (2018).

  14. Ö. Deniz, J. M. Frost, M. R. Branco,Nat. Rev. Genet. 20 ,
    417 – 431 (2019).

  15. R. A. Mosheret al.,Nature 460 , 283–286 (2009).

  16. T. S. Reamet al.,Mol. Cell 33 , 192–203 (2009).

  17. J. Luo, B. D. Hall,J. Mol. Evol. 64 , 101–112 (2007).

  18. J. R. Haaget al.,Mol. Cell 48 , 811–818 (2012).

  19. M. Marasco, W. Li, M. Lynch, C. S. Pikaard,Nucleic Acids Res.
    45 , 11315–11326 (2017).

  20. J. Singh, V. Mishra, F. Wang, H. Y. Huang, C. S. Pikaard,
    Mol. Cell 75 , 576–589.e5 (2019).

  21. J. A. Lawet al.,Nature 498 , 385–389 (2013).

  22. M. Zhou, A. M. S. Palanca, J. A. Law,Nat. Genet. 50 , 865– 873
    (2018).

  23. H. Zhanget al.,Proc. Natl. Acad. Sci. U.S.A. 110 , 8290–8295 (2013).

  24. L. M. Smithet al.,Plant Cell 19 , 1507–1521 (2007).

  25. J. A. Law, A. A. Vashisht, J. A. Wohlschlegel, S. E. Jacobsen,
    PLOS Genet. 7 , e1002195 (2011).

  26. R. Listeret al.,Cell 133 , 523–536 (2008).

  27. J. Liet al.,Nat. Plants 6 , 661–674 (2020).

  28. Y. Ogawaet al.,Plant Cell Physiol. 49 , 242–250 (2008).

  29. R. H. Ebright,J. Mol. Biol. 304 , 687–698 (2000).
    30. P. S. Salgadoet al.,PLOS Biol. 4 , e434 (2006).
    31. P. Cramer, D. A. Bushnell, R. D. Kornberg,Science 292 ,
    1863 – 1876 (2001).
    32. D. Wang, D. A. Bushnell, K. D. Westover, C. D. Kaplan,
    R. D. Kornberg,Cell 127 , 941–954 (2006).
    33. X. Chenet al.,Science 372 , eaba8490 (2021).
    34. S. Aibara, S. Schilbach, P. Cramer,Nature 594 , 124–128 (2021).
    35. M. Wind, D. Reines,BioEssays 22 , 327–336 (2000).
    36. A. C. Cheung, P. Cramer,Nature 471 , 249–253 (2011).
    37. D. Wanget al.,Science 324 , 1203–1206 (2009).
    38. H. Kettenberger, K. J. Armache, P. Cramer,Mol. Cell 16 ,
    955 – 965 (2004).
    39. T. Dalmay, A. Hamilton, S. Rudd, S. Angell, D. C. Baulcombe,
    Cell 101 , 543–553 (2000).
    40. E. Nudler,Cell 149 , 1438–1445 (2012).
    41. A. E. Sluder, D. H. Price, A. L. Greenleaf,J. Biol. Chem. 263 ,
    9917 – 9925 (1988).
    42. A. Fukudomeet al.,bioRxiv[Preprint] 2021.2008.2031.458351
    (2021).
    43. A. L. Gnatt, P. Cramer, J. Fu, D. A. Bushnell, R. D. Kornberg,
    Science 292 , 1876–1882 (2001).
    44. C. O. Barneset al.,Mol. Cell 59 , 258–269 (2015).
    45. L. Li, V. Molodtsov, W. Lin, R. H. Ebright, Y. Zhang,Proc. Natl.
    Acad. Sci. U.S.A. 117 , 5801–5809 (2020).
    46. S. Sainsbury, J. Niesser, P. Cramer,Nature 493 , 437–440 (2013).
    47. A. Molnaret al.,Science 328 , 872–875 (2010).
    48. J. Ma, L. Bai, M. D. Wang,Science 340 , 1580–1583 (2013).
    49. L. Farnung, S. M. Vos, P. Cramer,Nat. Commun. 9 , 5432 (2018).
    50. H. Eharaet al.,Science 363 , 744–747 (2019).
    51. V. Mishraet al.,Proc. Natl. Acad. Sci. U.S.A. 118 , e2019276118
    (2021).
    52. N. J. Proudfoot,Science 352 , aad9926 (2016).
    53. O. Porrua, D. Libri,Nat. Rev. Mol. Cell Biol. 16 , 190–202 (2015).


ACKNOWLEDGMENTS
We thank T. Xu for theA. thalianaT87 cell line, L. Kong, F. Wang,
G. Li, and J. Duan at the cryo-EM center of the National Center
for Protein Science Shanghai; B. Zhu and X. Li at the center for

Biological Imaging of the CAS Institute of Biophysics; S. Chang at
the cryo-EM center of Zhejiang University; and X. Ma at the
cryo-EM center of SUST for assistance with data collection.Funding:
J.W. received National Natural Science Foundation of China Grant
31788103 and Strategic Priority Research Program of CAS grant
XDB27030101; Y.Z. received the Shanghai Pilot Program for
Basic Research–Chinese Academy of Science, Shanghai Branch,
National Natural Science Foundation of China grant 31822001,
and Leading Science Key Research Program of CAS grant QYZDB-
SSW-SMC005.Author contributions:Conceptualization: Y.Z.
and J.W. Pol IV preparation: K.H., C.Z., J.G., H.Z., Z.G., and W.M.
Structure determination: K.H., Y.F., C.F., X.W., and L.Y. Transcription
assay: C.F. and K.H. RNA and DNA sequencing: Z.X. and K.H.
Funding acquisition: Y.Z., J.W., and Y.F. Project administration:
Y.Z., J.W., and Y.F. Supervision: Y.Z., J.W., and Y.F. Writing–original
draft: Y.Z. and J.W. Writing–review and editing: Y.Z., J.W., Y.F.,
K.H., X.W. and C.F.Competing interests:Authors declare that they
have no competing interests.Data and materials availability:
The cryo-EM map and coordinates were deposited in Protein
Data Bank and Electron Microscopy Data Bank (Pol IV–RDR2
holoenzyme: 7EU1 and EMD-31306; Pol IV–RDR2 bTEC: 7EU0 and
EMD-31305). The small RNA-seq and bisulfite-seq data (BioProject
PRJCA005428) were deposited in the Beijing Institute of Genomics
Data Center (https://ngdc.cncb.ac.cn/).

SUPPLEMENTARY MATERIALS
science.org/doi/10.1126/science.abj9184
Materials and Methods
Figs. S1 to S12
Tables S1 to S3
References ( 54 – 66 )
MDAR Reproducibility Checklist
Movies S1 to S5

14 June 2021; accepted 9 November 2021
10.1126/science.abj9184

CORONAVIRUS

An oral SARS-CoV-2 M


pro
inhibitor clinical candidate

for the treatment of COVID-19


Dafydd R. Owen^1 *, Charlotte M. N. Allerton^1 , Annaliesa S. Anderson^2 , Lisa Aschenbrenner^3 ,
Melissa Avery^3 , Simon Berritt^3 , Britton Boras^4 , Rhonda D. Cardin^2 , Anthony Carlo^3 ,
Karen J. Coffman^3 , Alyssa Dantonio^3 , Li Di^3 , Heather Eng^3 , RoseAnn Ferre^4 , Ketan S. Gajiwala^4 ,
Scott A. Gibson^5 , Samantha E. Greasley^4 , Brett L. Hurst^5 , Eugene P. Kadar^3 , Amit S. Kalgutkar^1 ,
Jack C. Lee^3 , Jisun Lee^3 , Wei Liu^4 , Stephen W. Mason^2 †, Stephen Noell^3 , Jonathan J. Novak^3 ‡,
R. Scott Obach^3 , Kevin Ogilvie^3 , Nandini C. Patel^1 , Martin Pettersson^1 ¤, Devendra K. Rai^2 ,
Matthew R. Reese^3 , Matthew F. Sammons^1 , Jean G. Sathish^2 , Ravi Shankar P. Singh^1 ,
Claire M. Steppan^3 , Al E. Stewart^4 , Jamison B. Tuttle^1 , Lawrence Updyke^1 , Patrick R. Verhoest^1 ,
Liuqing Wei^3 , Qingyi Yang^1 , Yuao Zhu^2

The worldwide outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) has become a global pandemic. Alongside vaccines, antiviral therapeutics are an
important part of the healthcare response to countering the ongoing threat presented by COVID-19.
Here, we report the discovery and characterization of PF-07321332, an orally bioavailable SARS-CoV-2
main protease inhibitor with in vitro pan-human coronavirus antiviral activity and excellent off-target
selectivity and in vivo safety profiles. PF-07321332 has demonstrated oral activity in a mouse-adapted
SARS-CoV-2 model and has achieved oral plasma concentrations exceeding the in vitro antiviral cell
potency in a phase 1 clinical trial in healthy human participants.

H


uman coronavirus infections are com-
mon, with at least four examples (229E,
NL63, OC43, and HKU1) now consi-
dered endemic ( 1 ). However, the emer-
gence within the past 20 years of severe
acute respiratory syndrome coronavirus

1 (SARS-CoV-1), Middle East respiratory
syndrome coronavirus (MERS-CoV), and
SARS-CoV-2 as novel human coronaviruses
has signaled the substantial threat poten-
tial of this viral class. The catastrophic
SARS-CoV-2 outbreak of 2019 has resulted

1586 24 DECEMBER 2021•VOL 374 ISSUE 6575 science.orgSCIENCE


RESEARCH | RESEARCH ARTICLES

Free download pdf