Science - USA (2021-12-24)

(Antfer) #1

was safe and well tolerated and exhibited a
significant boost in plasma concentrations
when co-administered with RTV. Oral plasma
concentrations of PF-07321332 250 mg with
RTV were considerably above the SARS-COV-2
antiviral EC 90 value (total EC 90 = 292 ng/ml,
unbound EC 90 = 90.5 ng/ml, 181 nM) at 12 hours
after dose, thus increasing confidence in achiev-
ing robust pan-coronavirus antiviral activity
clinically (Fig. 5D). On the basis of these ob-
servations and the high safety margins at the
NOAEL doses in animals, the efficacy of PF-
07321332 in COVID-19 patients will be assessed
with a twice-daily dosing paradigm with the
potential to increase the dose of PF-07321332
as a single agent and/or co-administered
with RTV.


REFERENCESANDNOTES



  1. V. M. Corman, D. Muth, D. Niemeyer, C. Drosten,Adv. Virus Res.
    100 , 163–188 (2018).

  2. WHO Solidarity Trial Consortium,N. Engl. J. Med. 384 , 497– 511
    (2021).

  3. L. Rivaet al.,Nature 586 , 113–119 (2020).

  4. A. Wahlet al.,Nature 591 , 451–457 (2021).
    5. S. S. Goodet al.,Antimicrob. Agents Chemother. 65 ,
    e02479–e02420 (2021).
    6. F. Wuet al.,Nature 579 , 265–269 (2020).
    7. P. Zhouet al.,Nature 579 , 270–273 (2020).
    8. T. Pillaiyar, M. Manickam, V. Namasivayam, Y. Hayashi,
    S. H. Jung,J. Med. Chem. 59 , 6595–6628 (2016).
    9. Z. Jinet al.,Nature 582 , 289–293 (2020).
    10. I. Schechter, A. Berger,Biochem. Biophys. Res. Commun. 27 ,
    157 – 162 (1967).
    11. W. Rutet al.,Nat. Chem. Biol. 17 , 222–228 (2021).
    12. K. Anand, J. Ziebuhr, P. Wadhwani, J. R. Mesters, R. Hilgenfeld,
    Science 300 , 1763–1767 (2003).
    13. L. Zhanget al.,J. Med. Chem. 63 , 4562–4578 (2020).
    14. A. K. Ghosh, H. L. Osswald, G. Prato,J. Med. Chem. 59 ,
    5172 – 5208 (2016).
    15. R. Cannalire, M. L. Barreca, G. Manfroni, V. Cecchetti,J. Med. Chem.
    59 , 16–41 (2016).
    16. J. Qiaoet al.,Science 371 , 1374–1378 (2021).
    17. R. L. Hoffmanet al.,J. Med. Chem. 63 , 12725–12747 (2020).
    18. L. Zhanget al.,Science 368 , 409–412 (2020).
    19. M. de Vrieset al.,J. Virol. 95 , e01819–e01820 (2021).
    20. B. Boraset al.,bioRxiv293498 [Preprint] (2020).
    https://www.biorxiv.org/content/10.1101/2020.09.12.293498v2.
    21. L. Diet al.,J. Pharm. Sci. 100 , 4974–4985 (2011).
    22. D. F. Veberet al.,J. Med. Chem. 45 , 2615–2623 (2002).
    23. J. B. Moon, R. S. Coleman, R. P. Hanzlik,J. Am. Chem. Soc.
    108 , 1350–1351 (2002).
    24. C.-P. Chucket al.,Eur. J. Med. Chem. 59 ,1–6 (2013).
    25. S. Konnoet al.,Bioorg. Med. Chem. 21 , 412–424 (2013).
    26. P. S. Dragovichet al.,Bioorg. Med. Chem. Lett. 10 , 45– 48
    (2000).
    27. M. Katoet al.,Drug Metab. Pharmacokinet. 18 , 365– 372
    (2003).
    28. R. L. Walsky, R. S. Obach,Drug Metab. Dispos. 32 , 647– 660
    (2004).
    29. S. I. Hattoriet al.,Nat. Commun. 12 , 668 (2021).
    30. J. Cui, F. Li, Z. L. Shi,Nat. Rev. Microbiol. 17 , 181– 192
    (2019).
    31. A. Barilliet al.,Biomedicines 8 , 127 (2020).
    32. M. B. Reddyet al.,Antimicrob. Agents Chemother. 56 ,
    3144 – 3156 (2012).
    33. S. R. Leistet al.,Cell 183 , 1070–1085.e12 (2020).
    34. M. J. Banker, T. H. Clark, J. A. Williams,J. Pharm. Sci. 92 ,
    967 – 974 (2003).
    35. K. McKeage, C. M. Perry, S. J. Keam,Drugs 69 , 477– 503
    (2009).
    36. R. S. Cvetkovic, K. L. Goa,Drugs 63 , 769–802 (2003).


ACKNOWLEDGMENTS
The authors thank the participants of the first-in-human (FIH)
study. We would also like to acknowledge the many Pfizer
colleagues who have contributed to the COVID-19 oral protease
program across a number of disciplines. In particular, we
acknowledge S. Sakata, J. Arcari, and J. Zhang for external
research resourcing; K. Farley for NMR studies; L. Lanyon for
protease panel data; Y. Lian, E. LaChapelle, S. Wright, S. O’Neil,
E. Yang, J. Humphrey, and B. Boscoe for compound synthesis;
S. Jenkinson for safety pharmacology data; K. Ryan for structural
biology support; E. Collins and C. Allais for FIH-enabling active
pharmaceutical ingredient supply; F. Clark for bioanalysis; H. Shi
for clinical assay support; G. Nucci and A. Bergman for first-in-
human study design and clinical pharmacology; F. Hackman for

1592 24 DECEMBER 2021¥VOL 374 ISSUE 6575 science.orgSCIENCE


0612 18 24

1

10

100

1000

10000

100000

Time (hr)

Mean Plasma

Concentration (ng/mL)

PF-07321332 60 mg/kg PF-07321332 200 mg/kg
PF-07321332 1000 mg/kg EC 90 SARS-COV-2

0 6 12 18 24

1

10

100

1000

10000

100000

1000000

Time (hr)

Mean Plasma

Concentration (ng/mL)

PF-07321332 40 mg/kg (20 mg/kg BID) PF-07321332 100 mg/kg (50 mg/kg BID)
PF-07321332 600 mg/kg (300 mg/kg BID) EC 90 SARS-COV-2

0 6 12 18 24 30 36 42 48

1

10

100

1000

10000

100000

Time (hr)

Median Plasma
Concentration (ng/mL)

PF-07321332 150 mg PF-07321332 250 mg+RTV
NOAEL (Cmax) EC 90 SARS-COV-2

036912

1

10

100

1000

10000

100000

Time (hr)

M

edian P

la

sm

a

Concentration (ng/mL)

PF-07321332 250 mg+RTV EC 90 MERS
NOAEL (Cmax) EC 90 SARS-COV-1

AB

CD

Fig. 5. Preclinical toxicology and healthy adult participant single ascending
dose study exposures for PF-07321332.(A) Rat oral toxicokinetic exposures
(day 14) of once-daily administered PF-07321332 compared with day 3 antiviral
EC 90 values in dNHBE cells. (B) Monkey oral toxicokinetic exposures (day 15)
of twice-daily administered PF-07321332 compared with day 3 antiviral EC 90
in dNHBE. (C) Human plasma concentrations (total) versus time profile after
oral administration (fasted state) of PF-07321332 (150 mg) and PF-07321332
(250 mg) with RTV (100 mg att=–12 hours, 0 hours, and 12 hours) compared
with day 3 antiviral EC 90 in dNHBE. (D) Human antiviral target coverage >EC90,uat
12 hours for SARS-CoV-1, SARS-CoV-2, and MERS-CoV after oral administration of


PF-07321332 (250 mg) and ritonavir (100 mg att=–12 hours, 0 hours, and 12 hours).
The in vitro unbound SARS-COV-2 EC 90 of 181 nM was converted to nanograms
per milliliter using a molecular weight of 499.5 g/mol for PF-07321332. Total
EC 90 was calculated by dividing unbound EC 90 byfu,plasma[rat 0.479, nonhuman
primate (NHP) 0.208, and human 0.310]. This resulted in total EC 90 values of
189, 208, and 292 ng/ml for rat, NHP, and human, respectively. The calculated
total human EC 90 for MERS-CoV and SARS-COV-1 were 566 and 422 ng/ml,
respectively. A human NOAEL of 79,700 ng/ml (forCmax) was estimated from
the ratCmaxvalue of 51,500 ng/ml at the NOAEL dose of 1000 mg/kg,
normalizing for plasma unbound fraction differences.

RESEARCH | RESEARCH ARTICLES

Free download pdf