Science - USA (2021-12-24)

(Antfer) #1

mAbs for prophylaxis and for treatments of
unvaccinated individuals or breakthrough
infections in at-risk patients. Moreover, next-
generation vaccine candidates have recently
been described to elicit broad sarbecovirus
immunity ( 32 , 42 , 81 – 83 ), holding the promise
to be resilient to the emergence of SARS-CoV-2
variants and of new zoonotic sarbecoviruses.
Looking forward, the discovery of broadly neu-
tralizing mAbs targeting the fusion machinery
makes tangible the development of a universal
b-coronavirus vaccine ( 27 – 31 ).


REFERENCESANDNOTES



  1. S. Celeet al.,Nature 593 , 142–146 (2021).

  2. H. Tegallyet al.,Nature 592 , 438–443 (2021).

  3. C. K. Wibmeret al.,Nat. Med. 27 , 622–625 (2021).

  4. D. A. Collieret al.,Nature 593 , 136–141 (2021).

  5. A. C. Wallset al.,Cell 181 , 281–292.e6 (2020).

  6. D. Wrappet al.,Science 367 , 1260–1263 (2020).

  7. M. Hoffmannet al.,Cell 181 , 271–280.e8 (2020).

  8. M. Hoffmann, H. Kleine-Weber, S. Pöhlmann,Mol. Cell 78 ,
    779 – 784.e5 (2020).

  9. M. Letko, A. Marzi, V. Munster,Nat. Microbiol. 5 , 562– 569
    (2020).

  10. P. Zhouet al.,Nature 579 , 270–273 (2020).

  11. S. Wanget al.,Cell Res. 31 , 126–140 (2021).

  12. W. T. Sohet al.,bioRxiv2020.11.05.369264 [Preprint] (2020).
    https://doi.org/10.1101/2020.11.05.369264.

  13. F. A. Lemppet al.,Nature 598 , 342–347 (2021).

  14. A. C. Wallset al.,Proc. Natl. Acad. Sci. U.S.A. 114 , 11157– 11162
    (2017).

  15. D. Pintoet al.,Nature 583 , 290–295 (2020).

  16. M. A. Tortoriciet al.,Nature 597 , 103–108 (2021).

  17. T. N. Starret al.,Nature 597 , 97–102 (2021).

  18. L. Piccoliet al.,Cell 183 , 1024–1042.e21 (2020).

  19. M. A. Tortoriciet al.,Science 370 , 950–957 (2020).

  20. B. E. Joneset al.,Sci. Transl. Med. 13 , eabf1906 (2021).

  21. C. A. Jetteet al.,Cell Rep. 36 , 109760 (2021).
    22. C. O. Barneset al.,Nature 588 , 682–687 (2020).
    23. M. McCallumet al.,Cell 184 , 2332–2347.e16 (2021).
    24. G. Ceruttiet al.,Cell Host Microbe 29 , 819–833.e7 (2021).
    25. X. Chiet al.,Science 369 , 650–655 (2020).
    26. N. Suryadevaraet al.,Cell 184 , 2316–2331.e15 (2021).
    27. M. M. Saueret al.,Nat. Struct. Mol. Biol. 28 , 478– 486
    (2021).
    28. C. Wanget al.,Nat. Commun. 12 , 1715 (2021).
    29. P. Zhouet al., bioRxiv 2021.03.30.437769 [Preprint] (2021).
    https://doi.org/10.1101/2021.03.30.437769.
    30. D. Pintoet al.,Science 373 , 1109–1116 (2021).
    31. G. Songet al.,Nat. Commun. 12 , 2938 (2021).
    32. P. S. Arunachalamet al.,Nature 594 , 253–258 (2021).
    33. K. McMahanet al.,Nature 590 , 630–634 (2021).
    34. D. S. Khouryet al.,Nat. Med. 27 , 1205–1211 (2021).
    35. K. S. Corbettet al.,Science 373 , eabj0299 (2021).
    36. S. Cherianet al.,Microorganisms 9 , 1542 (2021).
    37. P. Mlcochovaet al., bioRxiv 2021.05.08.443253 [Preprint]
    (2021). https://doi.org/10.1101/2021.05.08.443253.
    38. A. J. Greaneyet al.,Sci. Transl. Med. 13 , eabi9915 (2021).
    39. Z. Wanget al.,Nature 592 , 616–622 (2021).
    40. Y. Kanameet al.,J. Virol. 84 , 3210–3219 (2010).
    41. K. H. D. Crawfordet al.,Viruses 12 , 513 (2020).
    42. A. C. Wallset al.,Cell 184 , 5432–5447.e16 (2021).
    43. R. Ukeyet al., medRxiv 2021.09.17.21263528 [Preprint] (2021).
    https://doi.org/10.1101/2021.09.17.21263528.
    44. A. Sharma, G. Oda, M. Holodniy, medRxiv
    2021.09.23.21263864 [Preprint] (2021). https://doi.org/10.
    1101/2021.09.23.21263864.
    45. T. Kustinet al.,Nat. Med. 27 , 1379–1384 (2021).
    46. P. Y. Chiaet al., medRxiv 2021.07.28.21261295 [Preprint]
    (2021). https://doi.org/10.1101/2021.07.28.21261295.
    47. B. Liet al., medRxiv 2021.07.07.21260122 [Preprint] (2021).
    https://doi.org/10.1101/2021.07.07.21260122.
    48. P. Mlcochovaet al.,Nature 599 , 114–119 (2021).
    49. Y. Liuet al., bioRxiv 2021.08.12.456173 [Preprint] (2021).
    https://doi.org/10.1101/2021.08.12.456173.
    50. C. L. Hsiehet al.,Science 369 , 1501–1505 (2020).
    51. M. McCallum, A. C. Walls, J. E. Bowen, D. Corti, D. Veesler,Nat.
    Struct. Mol. Biol. 27 , 942–949 (2020).
    52. M. McCallumet al.,Science 373 , 648–654 (2021).
    53. E. Olmedillaset al.,bioRxiv2021.05.06.441046 [Preprint]
    (2021). https://doi.org/10.1101/2021.05.06.441046.
    54. C. O. Barneset al.,Cell 182 , 828–842.e16 (2020).
    55. S. J. Zostet al.,Nature 584 , 443–449 (2020).
    56. T. N. Starr, A. J. Greaney, A. S. Dingens, J. D. Bloom,Cell Rep.
    Med. 2 , 100255 (2021).
    57. J. Hansenet al.,Science 369 , 1010–1014 (2020).
    58. T. Tadaet al., bioRxiv 2021.05.14.444076 [Preprint] (2021).
    https://doi.org/10.1101/2021.05.14.444076.
    59. T. N. Starret al.,Science 371 , 850–854 (2021).
    60. A. L. Cathcartet al., bioRxiv 2021.03.09.434607 [Preprint]
    (2021). https://doi.org/10.1101/2021.03.09.434607.
    61. K. Wuet al.,N. Engl. J. Med. 384 , 1468–1470 (2021).
    62.I.A.T.M.Ferreiraet al.,J. Infect. Dis. 224 , 989–994 (2021).
    63. F. A. Lemppet al., bioRxiv 2021.04.03.438258 [Preprint]
    (2021). https://doi.org/10.1101/2021.04.03.438258.
    64. T. N. Starret al.,Cell 182 , 1295–1310.e20 (2020).
    65. E. C. Thomsonet al.,Cell 184 , 1171–1187.e20 (2021).
    66. M. Yuanet al.,Science 373 , 818–823 (2021).
    67. K. R. McCarthyet al.,Science 371 , 1139–1142 (2021).
    68. B. Choiet al.,N. Engl. J. Med. 383 , 2291–2293 (2020).
    69. V. A. Avanzatoet al.,Cell 183 , 1901–1912.e9 (2020).
    70. A. Rosaet al.,Sci. Adv. 7 , eabg7607 (2021).
    71. V.-V. Edaraet al.,N. Engl. J. Med. 385 , 664–666 (2021).
    72. D. Planaset al.,Nature 596 , 276–280 (2021).
    73. A. Saitoet al., bioRxiv 2021.06.17.448820 [Preprint] (2021).
    https://doi.org/10.1101/2021.06.17.448820.
    74. B. A. Johnsonet al.,Nature 591 , 293–299 (2021).
    75. Y. J. Houet al.,Cell 182 , 429–446.e14 (2020).
    76. C. Motozonoet al.,Cell Host Microbe 29 , 1124–1136.e11
    (2021).
    77. L. G. Thorneet al., bioRxiv 2021.06.06.446826 [Preprint]
    (2021). https://doi.org/10.1101/2021.06.06.446826.
    78. A. Z. Wecet al.,Science 369 , 731–736 (2020).
    79. C. G. Rappazzoet al.,Science 371 , 823–829 (2021).
    80. D. R. Martinezet al., bioRxiv 2021.04.27.441655 [Preprint]
    (2021). https://doi.org/10.1101/2021.04.27.441655.
    81. D. R. Martinezet al.,Science 373 , 991–998 (2021).
    82. A. A. Cohenet al.,Science 371 , 735–741 (2021).
    83. A. C. Wallset al.,Cell 183 , 1367–1382.e17 (2020).


ACKNOWLEDGMENTS
We thank H. Tani (University of Toyama) for providing the reagents
necessary for preparing VSV pseudotyped viruses. We thank
J. L. Mullen, G. Tsueng, A. Abdel Latif, M. Alkuzweny, M. Cano,
E. Haag, J. Zhou, M. Zeller, E. Hufbauer, N. Matteson, K. G. Andersen,
C. Wu, A. I. Su, K. Gangavarapu, L. D. Hughes, and the Center
for Viral Systems Biology outbreak.info (https://outbreak.info/).
Funding:This study was supported by the National
Institute of Allergy and Infectious Diseases (DP1AI158186 and
HHSN272201700059C to D.V.), a Pew Biomedical Scholars
Award (D.V.), an Investigators in the Pathogenesis of Infectious
Disease Award from the Burroughs Wellcome Fund (D.V.),
Fast Grants (D.V.), the Bill and Melinda Gates Foundation
(OPP1156262 to D.V.), the University of Washington Arnold and
Mabel Beckman cryo-EM center and the National Institutes of
Health grant S10OD032290 (to D.V.), and grant U01 AI151698
for the United World Antiviral Research Network (UWARN) as
part of the Centers for Research in Emerging Infectious
Diseases (CREID) Network. D.V. is an investigator of the Howard
Hughes Medical Institute.Author contributions:M.M. and
D.V. conceived of the project. M.M., A.C.W., and D.V. designed
the experiments. M.M. analyzed the incidence of variants.
M.M. and J.E.B. expressed and purified proteins and performed
ELISAs. M.M. carried out cryo-EM sample preparation, data
collection, processing model building, and refinement. A.C.W.
carried out BLI analysis. L.E.R. performed SPR analysis.
A.C.W. and K.R.S. performed pseudovirus neutralization assays
and analysis. H.V.D., A.D.M., S.W.T., M.C.M., L.C., M.S.P., H.Y.C.,
W.C.V.V., and D.C. provided reagents. G.S., D.C., and D.V.
supervised the experiments. M.M. and D.V. wrote the
manuscript, with input from all authors.Competing interests:
L.E.R., A.D.M., G.S., M.S.P., and D.C. are employees of Vir
Biotechnology, Inc., and may hold shares in Vir Biotechnology,
Inc. D.C. is currently listed as an inventor on multiple patent
applications, which disclose the subject matter described in this
manuscript. A.C.W., G.S., D.C., and D.V. are listed as inventors
on patent 49230.03US1 describing the S309 epitope. The
Veesler laboratory has received a sponsored research
agreement from Vir Biotechnology, Inc. H.Y.C. is a consultant
for Merck, Pfizer, Ellume, and the Bill and Melinda Gates
Foundation and has received support from Cepheid and
Sanofi-Pasteur. The remaining authors declare that the research
was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of

SCIENCEscience.org 24 DECEMBER 2021•VOL 374 ISSUE 6575 1625


Fig. 4. S2X303 defines a subclass of site i NTD mAbs cross-reacting with several variants.
(A) Binding of a panel of 11 neutralizing (antigenic site i) and 1 non-neutralizing (S2L20, antigenic site iv)
NTD-specific mAbs to recombinant SARS-CoV-2 S variants analyzed by ELISA displayed as a heatmap
(relative to wild-type Wuhan-Hu-1 binding). (B) Structure of the B.1.617.1 S trimer (surface rendering) bound
to the S2X303 Fab fragment (ribbons) shown in two orthogonal orientations. SARS-CoV-2 S protomers are
colored pink, cyan, and gold, whereas the S2X303 Fab heavy and light chains are colored dark and light
purple, respectively. Only the Fab variable domains are resolved and therefore modeled in the map.
N-linked glycans are rendered as dark blue spheres. (C) Ribbon diagram of the S2X303-bound SARS-CoV-2
B.1.617.1 NTD. (D) Zoomed-in view of the S2X303-bound B.1.617.1 NTD with key residues involved in the
interface shown as sticks. (E) Structure of the S trimer bound to the S2X303 overlaid with S2X333 and
P008-056 antibodies (PDB IDs 7LXW and 7NTC, respectively) shown as a surface rendering. S is colored as
in (B); S2X303, S2X333, and P008-056 are shown in purple, orange, and light gray, respectively.


RESEARCH | REPORTS
Free download pdf