Science - USA (2021-12-24)

(Antfer) #1

phase separation behavior—all of which could
affecttheefficiencyofassembly( 32 – 34 ). Our
observations of enhanced RNA packaging and
replication are consistent with recent reports
that the Delta variant (containing N:R203M)
generates viral RNA levels elevated by a factor
of 1000 within patients ( 35 ). Our results pro-
vide a molecular basis to explain why the
SARS-CoV-2 Delta variant demonstrates im-
proved viral fitness.


REFERENCES AND NOTES



  1. X. Xieet al.,Cell Host Microbe 27 , 841–848.e3 (2020).

  2. S. Toriiet al.,Cell Rep. 35 , 109014 (2021).

  3. C. Yeet al.,mBio 11 , e02168-20 (2020).

  4. X. Xieet al.,Nat. Protoc. 16 , 1761–1784 (2021).

  5. S. J. Rihnet al.,PLOS Biol. 19 , e3001091 (2021).

  6. J. A. Planteet al.,Nature 592 , 116–121 (2021).

  7. K. H. D. Crawfordet al.,Viruses 12 , 513 (2020).

  8. A. A. Latif, Lineage comparison. outbreak.info (accessed
    22 July 2021); https://outbreak.info/compare-lineages.

  9. W. Zenget al.,Biochem. Biophys. Res. Commun. 527 , 618– 623
    (2020).

  10. J. Cubuket al.,Nat. Commun. 12 , 1936 (2021).

  11. T. M. Perdikariet al.,EMBO J. 39 , e106478 (2020).

  12. C. B. Plesciaet al.,J. Biol. Chem. 296 , 100103 (2021).

  13. H. Swannet al.,Sci. Rep. 10 , 21877 (2020).

  14. J. Luet al.,Cell Res. 30 , 936–939 (2020).

  15. Y. L. Siuet al.,J. Virol. 82 , 11318–11330 (2008).

  16. P.-K. Hsiehet al.,J. Virol. 79 , 13848–13855 (2005).

  17. S. Dent, B. W. Neuman,Coronaviruses 1282 , 99–108 (2015).

  18. X. Luet al.,Immunology 122 , 496–502 (2007).

  19. L. Kuo, P. S. Masters,J. Virol. 87 , 5182–5192 (2013).

  20. K. Woo, M. Joo, K. Narayanan, K. H. Kim, S. Makino,J. Virol. 71 ,
    824 – 827 (1997).

  21. J. A. Fosmire, K. Hwang, S. Makino,J. Virol. 66 , 3522– 3530
    (1992).

  22. A. Kanakanet al.,Pathogens 9 , 912 (2020).

  23. T. Giroglouet al.,J. Virol. 78 , 9007–9015 (2004).

  24. M. Ujike, C. Huang, K. Shirato, S. Makino, F. Taguchi,
    J. Gen. Virol. 97 , 1853–1864 (2016).

  25. X. Denget al.,Cell 184 , 3426–3437.e8 (2021).

  26. A. Kuzminaet al.,Cell Host Microbe 29 , 522–528.e2 (2021).

  27. Y. Liuet al.,Nature10.1038/s41586-021-04245-0 (2021).

  28. C. Motozonoet al.,Cell Host Microbe 29 , 1124–1136.e11 (2021).

  29. R. Kalkeriet al.,Microorganisms 9 , 1744 (2021).

  30. Y. Weisblumet al.,eLife 9 , e61312 (2020).

  31. W. T. Harveyet al.,Nat. Rev. Microbiol. 19 , 409–424 (2021).

  32. X. Juet al.,PLOS Pathog. 17 , e1009439 (2021).

  33. C. R. Carlsonet al.,Mol. Cell 80 , 1092–1103.e4 (2020).

  34. S. Luet al.,Nat. Commun. 12 , 502 (2021).

  35. B. Liet al., medRxiv 2021.07.07.21260122 [Preprint] (2021);
    doi:10.1101/2021.07.07.21260122.


ACKNOWLEDGMENTS
We thank P.-Y. Shi for providing the plasmids for SARS-CoV-2
reverse genetics. We would also like to acknowledge J. Hamilton
for advice and guidance and S. Wyman and B. Bach for sequencing
of infectious clones. We also thank S. Pillai and H. S. Sperbert
at Vitalant Research Institute (San Francisco, CA) for providing
the 293T-ACE2-TMPRSS2 cells used for pseudovirus entry
assays, the S. P. J. Whelan laboratory for providing Vero cells
overexpressing human TMPRSS2, O. Schwartz from Institut
Pasteur for providing A549 cells stably expressing ACE2
(A549-ACE2), and K.-K. Conzelmann for providing BSR-T7/5 cells.
Funding:This project was funded by a grant from the National
Institutes of Health (NIH; R21AI59666). J.A.D. is a Howard Hughes
Medical Institute investigator. A.M.S. acknowledges the support
of the Natural Sciences and Engineering Research Council of
Canada (NSERC PDF-533021-2019) and IPC support from the NIH
(F31 AI164671-01).Author contributions:Conceptualization:
A.M.S. and J.A.D. Investigation: A.M.S., T.Y.T., T.T., I.P.C., A.C.,
M.M.K., B.S., P.-Y.C., J.M.H., and K.M.S. Methodology: A.M.S.,
T.Y.T., T.T., J.A.D., and M.O. Supervision: J.A.D. and M.O.
Writing: A.M.S., T.Y.T., T.T., and J.A.D.Competing interests:
A.M.S. and J.A.D. are inventors on a patent application filed by
the Gladstone Institutes and the University of California that
covers the method and composition of SARS-CoV-2 VLP preparations
for RNA transduction and expression in cells. J.A.D. is a cofounder
of Caribou Biosciences, Editas Medicine, Scribe Therapeutics, Intellia


Therapeutics, and Mammoth Biosciences. J.A.D. is a scientific
advisory board member of Vertex, Caribou Biosciences, Intellia
Therapeutics, eFFECTOR Therapeutics, Scribe Therapeutics,
Mammoth Biosciences, Synthego, Algen Biotechnologies,
Felix Biosciences, The Column Group, and Inari. J.A.D. is a director
at Johnson & Johnson and Tempus and has research projects
sponsored by Biogen, Pfizer, AppleTree Partners, and Roche.Data
and materials availability:All data are available in the main paper
or the supplementary materials. Plasmids are available from
Addgene (addgene.org) or by request. This work is licensed under
a Creative Commons Attribution 4.0 International (CC BY 4.0)
license, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly
cited. To view a copy of this license, visit https://creativecommons.
org/licenses/by/4.0/. This license does not apply to figures/
photos/artwork or other content included in the article that is

credited to a third party; obtain authorization from the rights
holder before using such material.

SUPPLEMENTARY MATERIALS
science.org/doi/10.1126/science.abl6184
Materials and Methods
Figs. S1 to S6
Tables S1 to S3
References
MDAR Reproducibility Checklist

26 July 2021; accepted 29 October 2021
Published online 4 November 2021
10.1126/science.abl6184

IMMUNOTHERAPY

Dietary fiber and probiotics influence the gut


microbiome and melanoma immunotherapy response


Christine N. Spencer^1 †‡, Jennifer L. McQuade^2 †, Vancheswaran Gopalakrishnan^1 †§,
John A. McCulloch^3 †, Marie Vetizou^3 †, Alexandria P. Cogdill1,4†¶, Md A. Wadud Khan^1 , Xiaotao Zhang^5 ,
Michael G. White^1 , Christine B. Peterson^6 , Matthew C. Wong^1 , Golnaz Morad^1 , Theresa Rodgers^2 ,
Jonathan H. Badger^3 , Beth A. Helmink^1 #, Miles C. Andrews1,7, Richard R. Rodrigues^8 , Andrey Morgun^9 ,
Young S. Kim^10 , Jason Roszik^2 , Kristi L. Hoffman^11 , Jiali Zheng^5 **, Yifan Zhou^4 , Yusra B. Medik^4 ,
Laura M. Kahn4,12, Sarah Johnson^1 , Courtney W. Hudgens^13 , Khalida Wani^13 , Pierre-Olivier Gaudreau^14 ,
Angela L. Harris^15 , Mohamed A. Jamal^16 , Erez N. Baruch^17 , Eva Perez-Guijarro^18 , Chi-Ping Day^18 ,
Glenn Merlino^18 , Barbara Pazdrak^2 , Brooke S. Lochmann^2 , Robert A. Szczepaniak-Sloane^1 ,
Reetakshi Arora^1 , Jaime Anderson^2 , Chrystia M. Zobniw^2 , Eliza Posada^2 , Elizabeth Sirmans^2 ,
Julie Simon^1 , Lauren E. Haydu^1 , Elizabeth M. Burton^1 , Linghua Wang^16 , Minghao Dang^16 ,
Karen Clise-Dwyer19,20, Sarah Schneider^19 , Thomas Chapman^1 , Nana-Ama A. S. Anang^4 ,
Sheila Duncan^1 , Joseph Toker21,22, Jared C. Malke^1 , Isabella C. Glitza^2 , Rodabe N. Amaria^2 ,
Hussein A. Tawbi^2 , Adi Diab^2 , Michael K. Wong^2 , Sapna P. Patel^2 , Scott E. Woodman^2 ,
Michael A. Davies^2 , Merrick I. Ross^1 , Jeffrey E. Gershenwald^1 , Jeffrey E. Lee^1 , Patrick Hwu^2 ††,
Vanessa Jensen^23 , Yardena Samuels^24 , Ravid Straussman^24 , Nadim J. Ajami^16 , Kelly C. Nelson^25 ,
Luigi Nezi^26 , Joseph F. Petrosino^11 , P. Andrew Futreal^16 , Alexander J. Lazar12,16,27, Jianhua Hu^28 ,
Robert R. Jenq16,29, Michael T. Tetzlaff^30 , Yan Yan^31 , Wendy S. Garrett^32 , Curtis Huttenhower31,33,34,35,
Padmanee Sharma4,36,37, Stephanie S. Watowich^4 , James P. Allison4,37, Lorenzo Cohen^38 ‡‡,
Giorgio Trinchieri^3 *‡‡, Carrie R. Daniel^5 *‡‡, Jennifer A. Wargo1,16*‡‡

Gut bacteria modulate the response to immune checkpoint blockade (ICB) treatment in cancer, but the
effect of diet and supplements on this interaction is not well studied. We assessed fecal microbiota
profiles, dietary habits, and commercially available probiotic supplement use in melanoma patients and
performed parallel preclinical studies. Higher dietary fiber was associated with significantly improved
progression-free survival in 128 patients on ICB, with the most pronounced benefit observed in patients
with sufficient dietary fiber intake and no probiotic use. Findings were recapitulated in preclinical models,
which demonstrated impaired treatment response to anti–programmed cell death 1 (anti–PD-1)–based
therapy in mice receiving a low-fiber diet or probiotics, with a lower frequency of interferon-g–positive
cytotoxic T cells in the tumor microenvironment. Together, these data have clinical implications for patients
receiving ICB for cancer.

T


reatment with immune checkpoint block-
ade (ICB) has revolutionized cancer ther-
apy ( 1 ), and the influence of the gut
microbiome on therapeutic response has
now been demonstrated in numerous hu-
mancohortsandinpreclinicalmodels( 2 – 7 ).
The human gut microbiome is itself shaped
by a wide variety of environmental exposures,
including diet ( 8 , 9 ) and medication use ( 10 – 13 ),
with host genetics accounting for <10% of varia-
tion ( 14 ). However, whether factors such as

dietary fiber intake and the use of commercially
available probiotics affect immunotherapy re-
sponses in cancer patients remains unclear.
To help address this, we profiled the gut
(fecal) microbiome and assessed clinicopatho-
logic features and outcomes in a large cohort
of melanoma patients (n=438;Fig.1Aand
fig. S1). The majority of these patients were
receiving systemic therapy for metastatic
melanoma (n= 321), and responses to treat-
ment were assessed with radiographic imaging

1632 24 DECEMBER 2021•VOL 374 ISSUE 6575 science.orgSCIENCE


RESEARCH | REPORTS

Free download pdf