Science - USA (2021-12-24)

(Antfer) #1

  1. A. F. Drewet al., Ligneous conjunctivitis in plasminogen-
    deficient mice.Blood 91 , 1616–1624 (1998). doi:10.1182/blood.
    V91.5.1616; pmid: 9473227

  2. S. Liang, K. B. Hosur, H. Domon, G. Hajishengallis, Periodontal
    inflammation and bone loss in aged mice.J. Periodontal Res.
    45 , 574–578 (2010). doi:10.1111/j.1600-0765.2009.01245.x;
    pmid: 20337897

  3. M. J. Flicket al., Leukocyte engagement of fibrin(ogen) via the
    integrin receptoraMb 2 /Mac-1 is critical for host inflammatory
    response in vivo.J. Clin. Invest. 113 , 1596–1606 (2004).
    doi:10.1172/JCI20741; pmid: 15173886

  4. V. Papayannopoulos, K. D. Metzler, A. Hakkim, A. Zychlinsky,
    Neutrophil elastase and myeloperoxidase regulate the
    formation of neutrophil extracellular traps.J. Cell Biol. 191 ,
    677 – 691 (2010). doi:10.1083/jcb.201006052; pmid: 20974816

  5. A. Akincet al., The Onpattro story and the clinical translation
    of nanomedicines containing nucleic acid-based drugs.
    Nat. Nanotechnol. 14 , 1084–1087 (2019). doi:10.1038/
    s41565-019-0591-y; pmid: 31802031

  6. E. Hajishengallis, G. Hajishengallis, Neutrophil homeostasis and
    periodontal health in children and adults.J. Dent. Res. 93 , 231– 237
    (2014). doi:10.1177/0022034513507956; pmid: 24097856

  7. G. Hajishengallis, T. Chavakis, E. Hajishengallis, J. D. Lambris,
    Neutrophil homeostasis and inflammation: Novel paradigms
    from studying periodontitis.J. Leukoc. Biol. 98 , 539– 548
    (2015). doi:10.1189/jlb.3VMR1014-468R; pmid: 25548253

  8. M. Munzet al., Meta-analysis of genome-wide association
    studies of aggressive and chronic periodontitis identifies two
    novel risk loci.Eur. J. Hum. Genet. 27 , 102–113 (2019).
    doi:10.1038/s41431-018-0265-5; pmid: 30218097

  9. A. S. Schaeferet al., Genetic evidence forPLASMINOGENas a
    shared genetic risk factor of coronary artery disease and
    periodontitis.Circ. Cardiovasc. Genet. 8 , 159–167 (2015).
    doi:10.1161/CIRCGENETICS.114.000554; pmid: 25466412

  10. N. M. Moutsopouloset al., Defective neutrophil recruitment in
    leukocyte adhesion deficiency type I disease causes local
    IL-17–driven inflammatory bone loss.Sci. Transl. Med. 6 , 229ra40
    (2014). doi:10.1126/scitranslmed.3007696; pmid: 24670684

  11. L. M. Silva, L. Brenchley, N. M. Moutsopoulos, Primary
    immunodeficiencies reveal the essential role of tissue
    neutrophils in periodontitis.Immunol. Rev. 287 , 226– 235
    (2019). doi:10.1111/imr.12724; pmid: 30565245

  12. M. J. Flicket al., Fibrin(ogen) exacerbates inflammatory joint
    disease through a mechanism linked to the integrinaMb 2
    binding motif.J. Clin. Invest. 117 , 3224–3235 (2007).
    doi:10.1172/JCI30134; pmid: 17932565

  13. R. A. Adamset al., The fibrin-derivedg377-395peptide
    inhibits microglia activation and suppresses relapsing
    paralysis in central nervous system autoimmune disease.
    J. Exp. Med. 204 , 571–582 (2007). doi:10.1084/
    jem.20061931; pmid: 17339406

  14. D. Davaloset al., Fibrinogen-induced perivascular microglial
    clustering is required for the development of axonal
    damage in neuroinflammation.Nat. Commun. 3 , 1227 (2012).
    doi:10.1038/ncomms2230; pmid: 23187627

  15. J. B. Matthews, H. J. Wright, A. Roberts, P. R. Cooper,
    I. L. Chapple, Hyperactivity and reactivity of peripheral blood
    neutrophils in chronic periodontitis.Clin. Exp. Immunol. 147 ,
    255 – 264 (2007). doi:10.1111/j.1365-2249.2006.03276.x;
    pmid: 17223966

  16. J. B. Matthewset al., Neutrophil hyper-responsiveness in
    periodontitis.J. Dent. Res. 86 , 718–722 (2007). doi:10.1177/
    154405910708600806 ; pmid: 17652198

  17. E. A. Nicu, P. Rijkschroeff, E. Wartewig, K. Nazmi, B. G. Loos,
    Characterization of oral polymorphonuclear neutrophils in
    periodontitis patients: A case-control study.BMC Oral Health
    18 , 149 (2018). doi:10.1186/s12903-018-0615-2;
    pmid: 30143044

  18. P. C. White, I. J. Chicca, P. R. Cooper, M. R. Milward, I. L. Chapple,
    Neutrophil Extracellular Traps in Periodontitis: A Web of
    Intrigue.J. Dent. Res. 95 , 26–34 (2016). doi:10.1177/
    0022034515609097 ; pmid: 26442948

  19. N. Dutzanet al., A dysbiotic microbiome triggers TH17 cells
    to mediate oral mucosal immunopathology in mice and
    humans.Sci. Transl. Med. 10 , eaat0797 (2018). doi:10.1126/
    scitranslmed.aat0797; pmid: 30333238

  20. D. W. Williamset al., Human oral mucosa cell atlas reveals a
    stromal-neutrophil axis regulating tissue immunity.Cell 184 ,
    4090 – 4104.e15 (2021). doi:10.1016/j.cell.2021.05.013;
    pmid: 34129837

  21. B. Amulic, C. Cazalet, G. L. Hayes, K. D. Metzler, A. Zychlinsky,
    Neutrophil function: From mechanisms to disease.Annu. Rev.
    Immunol. 30 , 459–489 (2012). doi:10.1146/annurev-
    immunol-020711-074942; pmid: 22224774
    34. E. Kolaczkowska, P. Kubes, Neutrophil recruitment and
    function in health and inflammation.Nat. Rev. Immunol. 13 ,
    159 – 175 (2013). doi:10.1038/nri3399; pmid: 23435331
    35. K. Leyet al., Neutrophils: New insights and open questions.
    Sci. Immunol. 3 , eaat4579 (2018). doi:10.1126/sciimmunol.
    aat4579; pmid: 30530726
    36. G. Sollberger, D. O. Tilley, A. Zychlinsky, Neutrophil Extracellular
    Traps: The Biology of Chromatin Externalization.Dev. Cell 44 ,
    542 – 553 (2018). doi:10.1016/j.devcel.2018.01.019; pmid: 29533770
    37. F. V. S. Castanheira, P. Kubes, Neutrophils and NETs in modulating
    acute and chronic inflammation.Blood 133 , 2178–2185 (2019).
    doi:10.1182/blood-2018-11-844530; pmid: 30898862
    38. C. Carmona-Riveraet al., Synovial fibroblast-neutrophil
    interactions promote pathogenic adaptive immunity in
    rheumatoid arthritis.Sci. Immunol. 2 , eaag3358 (2017).
    doi:10.1126/sciimmunol.aag3358; pmid: 28649674
    39. B. Schacheret al.,Aggregatibacter actinomycetemcomitansas
    indicator for aggressive periodontitis by two analysing
    strategies.J. Clin. Periodontol. 34 , 566–573 (2007).
    doi:10.1111/j.1600-051X.2007.01080.x; pmid: 17433043
    40. N. L. Overton, A. Simpson, P. Bowyer, D. W. Denning, Genetic
    susceptibility to severe asthma with fungal sensitization.Int. J.
    Immunogenet. 44 , 93–106 (2017). doi:10.1111/iji.12312;
    pmid: 28371335
    41. J. K. Ryuet al., Fibrin-targeting immunotherapy protects
    against neuroinflammation and neurodegeneration.Nat. Immunol.
    19 , 1212–1223 (2018). doi:10.1038/s41590-018-0232-x;
    pmid: 30323343
    42. T. T. Suhet al., Resolution of spontaneous bleeding events but
    failure of pregnancy in fibrinogen-deficient mice.Genes Dev. 9 ,
    2020 – 2033 (1995). doi:10.1101/gad.9.16.2020; pmid: 7649481
    43. P. Carmelietet al., Physiological consequences of loss of
    plasminogen activator gene function in mice.Nature 368 ,
    419 – 424 (1994). doi:10.1038/368419a0; pmid: 8133887
    44. A. Coxonet al., A novel role for theb2 integrin CD11b/CD18 in
    neutrophil apoptosis: A homeostatic mechanism in
    inflammation.Immunity 5 , 653–666 (1996). doi:10.1016/
    S1074-7613(00)80278-2; pmid: 8986723
    45. T. Iwakiet al., The generation and characterization of mice
    expressing a plasmin-inactivating active site mutation.
    J. Thromb. Haemost. 8 , 2341–2344 (2010). doi:10.1111/
    j.1538-7836.2010.03995.x; pmid: 20653841
    46. A. Belaaouajet al., Mice lacking neutrophil elastase reveal impaired
    host defense against gram negative bacterial sepsis.Nat. Med. 4 ,
    615 – 618 (1998). doi:10.1038/nm0598-615; pmid: 9585238
    47. T. H. Buggeet al., Urokinase-type plasminogen activator is
    effective in fibrin clearance in the absence of its receptor or
    tissue-type plasminogen activator.Proc. Natl. Acad. Sci. U.S.A. 93 ,
    5899 – 5904 (1996). doi:10.1073/pnas.93.12.5899; pmid: 8650190
    48. M. A. Eskanet al., The leukocyte integrin antagonist Del-1 inhibits
    IL-17-mediated inflammatory bone loss.Nat. Immunol. 13 ,
    465 – 473 (2012). doi:10.1038/ni.2260; pmid: 22447028
    49. A. Wilensky, Y. Gabet, H. Yumoto, Y. Houri-Haddad, L. Shapira,
    Three-dimensional quantification of alveolar bone loss in
    Porphyromonas gingivalis-infected mice using micro-computed
    tomography.J. Periodontol. 76 , 1282–1286 (2005).
    doi:10.1902/jop.2005.76.8.1282; pmid: 16101359
    50. A. C. Lendrum, D. S. Fraser, W. Slidders, R. Henderson, Studies
    on the character and staining of fibrin.J. Clin. Pathol. 15 ,
    401 – 413 (1962). doi:10.1136/jcp.15.5.401; pmid: 13929601
    51. L. M. Silvaet al., Plasmin-mediated fibrinolysis enables
    macrophage migration in a murine model of inflammation.
    Blood 134 , 291–303 (2019). doi:10.1182/blood.2018874859;
    pmid: 31101623
    52. N. Dutzan, L. Abusleme, J. E. Konkel, N. M. Moutsopoulos,
    Isolation, Characterization and Functional Examination of the
    Gingival Immune Cell Network.J. Vis. Exp. 108 , e53736 (2016).
    doi:10.3791/53736; pmid: 26967370
    53. J. M. Prasadet al., Mice expressing a mutant form of fibrinogen
    that cannot support fibrin formation exhibit compromised
    antimicrobial host defense.Blood 126 , 2047–2058 (2015).
    doi:10.1182/blood-2015-04-639849; pmid: 26228483
    54. M. Swamydas, M. S. Lionakis, Isolation, purification and
    labeling of mouse bone marrow neutrophils for functional
    studies and adoptive transfer experiments.J. Vis. Exp. 77 ,
    e50586 (2013). doi:10.3791/50586; pmid: 23892876
    55. L. M. Silva, N. Moutsopoulos, T. H. Bugge, A. Doyle, Live Imaging
    and Quantification of Neutrophil Extracellular Trap Formation.
    Curr Protoc 1 , e157 (2021). doi:10.1002/cpz1.157; pmid: 34260822
    56. A. W. Strilchuket al., Sustained depletion of FXIII-A by inducing
    acquired FXIII-B deficiency.Blood 136 , 2946–2954 (2020).
    doi:10.1182/blood.2020004976; pmid: 32678423
    57. J. A. Kulkarniet al., On the Formation and Morphology of Lipid
    Nanoparticles Containing Ionizable Cationic Lipids and siRNA.


ACS Nano 12 , 4787–4795 (2018). doi:10.1021/
acsnano.8b01516; pmid: 29614232


  1. A. Akincet al., Targeted delivery of RNAi therapeutics with
    endogenous and exogenous ligand-based mechanisms.Mol. Ther.
    18 , 1357–1364 (2010). doi:10.1038/mt.2010.85; pmid: 20461061

  2. K. Divariset al., Exploring the genetic basis of chronic periodontitis:
    A genome-wide association study.Hum. Mol. Genet. 22 ,
    2312 – 2324 (2013). doi:10.1093/hmg/ddt065; pmid: 23459936

  3. J. D. Beck, K. L. Moss, T. Morelli, S. Offenbacher, In search of
    appropriate measures of periodontal status: The Periodontal
    Profile Phenotype (P^3 ) system.J. Periodontol. 89 , 166– 175
    (2018). doi:10.1002/JPER.17-0424; pmid: 29520827

  4. T. Morelliet al., Derivation and Validation of the Periodontal
    and Tooth Profile Classification System for Patient
    Stratification.J. Periodontol. 88 , 153–165 (2017). doi:10.1902/
    jop.2016.160379; pmid: 27620653

  5. K. Divaris, K. Moss, J. D. Beck, Biologically informed
    stratification of periodontal disease holds the key to achieving
    precision oral health.J. Periodontol. 91 , S50–S55 (2020).
    doi:10.1002/JPER.20-0096; pmid: 32432812

  6. K. Divariset al., Genome-wide association study of periodontal
    pathogen colonization.J. Dent. Res. 91 , S21–S28 (2012).
    doi:10.1177/0022034512447951; pmid: 22699663

  7. R. P. Darveau, G. Hajishengallis, M. A. Curtis,Porphyromonas
    gingivalisas a potential community activist for disease.J. Dent.
    Res. 91 , 816–820 (2012). doi:10.1177/0022034512453589;
    pmid: 22772362

  8. A. V. Segrè, DIAGRAM Consortium, MAGIC investigators,
    L. Groop, V. K. Mootha, M. J. Daly, D. Altshuler, Common
    inherited variation in mitochondrial genes is not enriched for
    associations with type 2 diabetes or related glycemic traits.
    PLOS Genet. 6 , e1001058 (2010). doi:10.1371/journal.
    pgen.1001058; pmid: 20714348

  9. R. J. Pruimet al., LocusZoom: Regional visualization of genome-
    wide association scan results.Bioinformatics 26 , 2336– 2337
    (2010). doi:10.1093/bioinformatics/btq419; pmid: 20634204

  10. N. Segataet al., Metagenomic biomarker discovery and
    explanation.Genome Biol. 12 , R60 (2011). doi:10.1186/
    gb-2011-12-6-r60; pmid: 21702898


ACKNOWLEDGMENTS
We thank M. J. Danton for critically reviewing this manuscript. We
also thank the NCI microbiome sequencing core for assistance
with 16SrRNA sequencing and data deposition.Funding:This work
was funded by the NIH NIDCR Intramural Research Program (T.H.B.
and N.M.M.); NIDCR 1K99DE030124-01A1 (L.M.S.); NIDCR Veterinary
Resources Core (ZIC DE000740-05); NIDCR/NIDCD Genomics and
Computational Biology Core (ZIC DC000086); NIDCR Combined
Technical Research Core (ZIC DE000729-09); and NIDCR
U01DE025046 (C.S.A. and K.D.). This work was also supported in
part by NIH R01DK112778 and NIH R01CA211098 (M.J.F.), NIH
R01HL013423-43A1 (F.J.C.), and FONDECYT grant 11180505 (L.A.).
Author contributions:Conceptualization: L.M.S., T.H.B., and
N.M.M.; Formal analysis: L.M.S., D.M., K.M., C.S.A., and K.D.; Funding
acquisition: T.H.B. and N.M.M.; Investigation: L.M.S., A.D.D., T.G.-W.,
C.L.T., L.A., and C.E.Z.; Methodology: L.M.S., A.D.D., T.G.-W., N.D.,
C.L.T., L.A., E.M.C., A.G.L., C.E.Z., M.S., M.S.L., and M.J.F.; Project
administration: L.M.S., T.H.B., and N.M.M.; Resources: L.J.J., J.L.,
P.J., V.K., F.J.C., C.J.K., and M.J.F.; Software: A.D.D.; Visualization:
L.M.S.; Writing–original draft: L.M.S., A.D.D., K.D., T.H.B., and N.M.M.;
Writing–review and editing: all authors.Competing interests:
C.J.K. is a director and shareholder of NanoVation Therapeutics Inc.,
which is commercializing RNA-based therapies. C.J.K., L.J.J., and J.L.
are inventors on pending intellectual property related to RNA-based
therapies. The other authors declare that they have no competing
interests.Data and materials availability:RNA-seq data have been
deposited to the GEO database (record GSE178616) and can be
accessed using the token: ylkhyomevlszjuv. Sequencing data have
been deposited to the Sequence Read Archive (SRA) with the
BioProjectID PRJNA753711 (https://dataview.ncbi.nlm.nih.gov/object/
PRJNA753711?reviewer=a5barpkgib249d5v2res6mtgef). All other data
are available in the main text or supplementary materials.

SUPPLEMENTARY MATERIALS
science.org/doi/10.1126/science.abl5450
Figs. S1 to S9
Tables S1 and S2
MDAR Reproducibility Checklist

21 July 2021; accepted 29 October 2021
10.1126/science.abl5450

Silvaet al.,Science 374 , eabl5450 (2021) 24 December 2021 11 of 11


RESEARCH | RESEARCH ARTICLE

Free download pdf