- A. F. Drewet al., Ligneous conjunctivitis in plasminogen-
 deficient mice.Blood 91 , 1616–1624 (1998). doi:10.1182/blood.
 V91.5.1616; pmid: 9473227
- S. Liang, K. B. Hosur, H. Domon, G. Hajishengallis, Periodontal
 inflammation and bone loss in aged mice.J. Periodontal Res.
 45 , 574–578 (2010). doi:10.1111/j.1600-0765.2009.01245.x;
 pmid: 20337897
- M. J. Flicket al., Leukocyte engagement of fibrin(ogen) via the
 integrin receptoraMb 2 /Mac-1 is critical for host inflammatory
 response in vivo.J. Clin. Invest. 113 , 1596–1606 (2004).
 doi:10.1172/JCI20741; pmid: 15173886
- V. Papayannopoulos, K. D. Metzler, A. Hakkim, A. Zychlinsky,
 Neutrophil elastase and myeloperoxidase regulate the
 formation of neutrophil extracellular traps.J. Cell Biol. 191 ,
 677 – 691 (2010). doi:10.1083/jcb.201006052; pmid: 20974816
- A. Akincet al., The Onpattro story and the clinical translation
 of nanomedicines containing nucleic acid-based drugs.
 Nat. Nanotechnol. 14 , 1084–1087 (2019). doi:10.1038/
 s41565-019-0591-y; pmid: 31802031
- E. Hajishengallis, G. Hajishengallis, Neutrophil homeostasis and
 periodontal health in children and adults.J. Dent. Res. 93 , 231– 237
 (2014). doi:10.1177/0022034513507956; pmid: 24097856
- G. Hajishengallis, T. Chavakis, E. Hajishengallis, J. D. Lambris,
 Neutrophil homeostasis and inflammation: Novel paradigms
 from studying periodontitis.J. Leukoc. Biol. 98 , 539– 548
 (2015). doi:10.1189/jlb.3VMR1014-468R; pmid: 25548253
- M. Munzet al., Meta-analysis of genome-wide association
 studies of aggressive and chronic periodontitis identifies two
 novel risk loci.Eur. J. Hum. Genet. 27 , 102–113 (2019).
 doi:10.1038/s41431-018-0265-5; pmid: 30218097
- A. S. Schaeferet al., Genetic evidence forPLASMINOGENas a
 shared genetic risk factor of coronary artery disease and
 periodontitis.Circ. Cardiovasc. Genet. 8 , 159–167 (2015).
 doi:10.1161/CIRCGENETICS.114.000554; pmid: 25466412
- N. M. Moutsopouloset al., Defective neutrophil recruitment in
 leukocyte adhesion deficiency type I disease causes local
 IL-17–driven inflammatory bone loss.Sci. Transl. Med. 6 , 229ra40
 (2014). doi:10.1126/scitranslmed.3007696; pmid: 24670684
- L. M. Silva, L. Brenchley, N. M. Moutsopoulos, Primary
 immunodeficiencies reveal the essential role of tissue
 neutrophils in periodontitis.Immunol. Rev. 287 , 226– 235
 (2019). doi:10.1111/imr.12724; pmid: 30565245
- M. J. Flicket al., Fibrin(ogen) exacerbates inflammatory joint
 disease through a mechanism linked to the integrinaMb 2
 binding motif.J. Clin. Invest. 117 , 3224–3235 (2007).
 doi:10.1172/JCI30134; pmid: 17932565
- R. A. Adamset al., The fibrin-derivedg377-395peptide
 inhibits microglia activation and suppresses relapsing
 paralysis in central nervous system autoimmune disease.
 J. Exp. Med. 204 , 571–582 (2007). doi:10.1084/
 jem.20061931; pmid: 17339406
- D. Davaloset al., Fibrinogen-induced perivascular microglial
 clustering is required for the development of axonal
 damage in neuroinflammation.Nat. Commun. 3 , 1227 (2012).
 doi:10.1038/ncomms2230; pmid: 23187627
- J. B. Matthews, H. J. Wright, A. Roberts, P. R. Cooper,
 I. L. Chapple, Hyperactivity and reactivity of peripheral blood
 neutrophils in chronic periodontitis.Clin. Exp. Immunol. 147 ,
 255 – 264 (2007). doi:10.1111/j.1365-2249.2006.03276.x;
 pmid: 17223966
- J. B. Matthewset al., Neutrophil hyper-responsiveness in
 periodontitis.J. Dent. Res. 86 , 718–722 (2007). doi:10.1177/
 154405910708600806 ; pmid: 17652198
- E. A. Nicu, P. Rijkschroeff, E. Wartewig, K. Nazmi, B. G. Loos,
 Characterization of oral polymorphonuclear neutrophils in
 periodontitis patients: A case-control study.BMC Oral Health
 18 , 149 (2018). doi:10.1186/s12903-018-0615-2;
 pmid: 30143044
- P. C. White, I. J. Chicca, P. R. Cooper, M. R. Milward, I. L. Chapple,
 Neutrophil Extracellular Traps in Periodontitis: A Web of
 Intrigue.J. Dent. Res. 95 , 26–34 (2016). doi:10.1177/
 0022034515609097 ; pmid: 26442948
- N. Dutzanet al., A dysbiotic microbiome triggers TH17 cells
 to mediate oral mucosal immunopathology in mice and
 humans.Sci. Transl. Med. 10 , eaat0797 (2018). doi:10.1126/
 scitranslmed.aat0797; pmid: 30333238
- D. W. Williamset al., Human oral mucosa cell atlas reveals a
 stromal-neutrophil axis regulating tissue immunity.Cell 184 ,
 4090 – 4104.e15 (2021). doi:10.1016/j.cell.2021.05.013;
 pmid: 34129837
- B. Amulic, C. Cazalet, G. L. Hayes, K. D. Metzler, A. Zychlinsky,
 Neutrophil function: From mechanisms to disease.Annu. Rev.
 Immunol. 30 , 459–489 (2012). doi:10.1146/annurev-
 immunol-020711-074942; pmid: 22224774
 34. E. Kolaczkowska, P. Kubes, Neutrophil recruitment and
 function in health and inflammation.Nat. Rev. Immunol. 13 ,
 159 – 175 (2013). doi:10.1038/nri3399; pmid: 23435331
 35. K. Leyet al., Neutrophils: New insights and open questions.
 Sci. Immunol. 3 , eaat4579 (2018). doi:10.1126/sciimmunol.
 aat4579; pmid: 30530726
 36. G. Sollberger, D. O. Tilley, A. Zychlinsky, Neutrophil Extracellular
 Traps: The Biology of Chromatin Externalization.Dev. Cell 44 ,
 542 – 553 (2018). doi:10.1016/j.devcel.2018.01.019; pmid: 29533770
 37. F. V. S. Castanheira, P. Kubes, Neutrophils and NETs in modulating
 acute and chronic inflammation.Blood 133 , 2178–2185 (2019).
 doi:10.1182/blood-2018-11-844530; pmid: 30898862
 38. C. Carmona-Riveraet al., Synovial fibroblast-neutrophil
 interactions promote pathogenic adaptive immunity in
 rheumatoid arthritis.Sci. Immunol. 2 , eaag3358 (2017).
 doi:10.1126/sciimmunol.aag3358; pmid: 28649674
 39. B. Schacheret al.,Aggregatibacter actinomycetemcomitansas
 indicator for aggressive periodontitis by two analysing
 strategies.J. Clin. Periodontol. 34 , 566–573 (2007).
 doi:10.1111/j.1600-051X.2007.01080.x; pmid: 17433043
 40. N. L. Overton, A. Simpson, P. Bowyer, D. W. Denning, Genetic
 susceptibility to severe asthma with fungal sensitization.Int. J.
 Immunogenet. 44 , 93–106 (2017). doi:10.1111/iji.12312;
 pmid: 28371335
 41. J. K. Ryuet al., Fibrin-targeting immunotherapy protects
 against neuroinflammation and neurodegeneration.Nat. Immunol.
 19 , 1212–1223 (2018). doi:10.1038/s41590-018-0232-x;
 pmid: 30323343
 42. T. T. Suhet al., Resolution of spontaneous bleeding events but
 failure of pregnancy in fibrinogen-deficient mice.Genes Dev. 9 ,
 2020 – 2033 (1995). doi:10.1101/gad.9.16.2020; pmid: 7649481
 43. P. Carmelietet al., Physiological consequences of loss of
 plasminogen activator gene function in mice.Nature 368 ,
 419 – 424 (1994). doi:10.1038/368419a0; pmid: 8133887
 44. A. Coxonet al., A novel role for theb2 integrin CD11b/CD18 in
 neutrophil apoptosis: A homeostatic mechanism in
 inflammation.Immunity 5 , 653–666 (1996). doi:10.1016/
 S1074-7613(00)80278-2; pmid: 8986723
 45. T. Iwakiet al., The generation and characterization of mice
 expressing a plasmin-inactivating active site mutation.
 J. Thromb. Haemost. 8 , 2341–2344 (2010). doi:10.1111/
 j.1538-7836.2010.03995.x; pmid: 20653841
 46. A. Belaaouajet al., Mice lacking neutrophil elastase reveal impaired
 host defense against gram negative bacterial sepsis.Nat. Med. 4 ,
 615 – 618 (1998). doi:10.1038/nm0598-615; pmid: 9585238
 47. T. H. Buggeet al., Urokinase-type plasminogen activator is
 effective in fibrin clearance in the absence of its receptor or
 tissue-type plasminogen activator.Proc. Natl. Acad. Sci. U.S.A. 93 ,
 5899 – 5904 (1996). doi:10.1073/pnas.93.12.5899; pmid: 8650190
 48. M. A. Eskanet al., The leukocyte integrin antagonist Del-1 inhibits
 IL-17-mediated inflammatory bone loss.Nat. Immunol. 13 ,
 465 – 473 (2012). doi:10.1038/ni.2260; pmid: 22447028
 49. A. Wilensky, Y. Gabet, H. Yumoto, Y. Houri-Haddad, L. Shapira,
 Three-dimensional quantification of alveolar bone loss in
 Porphyromonas gingivalis-infected mice using micro-computed
 tomography.J. Periodontol. 76 , 1282–1286 (2005).
 doi:10.1902/jop.2005.76.8.1282; pmid: 16101359
 50. A. C. Lendrum, D. S. Fraser, W. Slidders, R. Henderson, Studies
 on the character and staining of fibrin.J. Clin. Pathol. 15 ,
 401 – 413 (1962). doi:10.1136/jcp.15.5.401; pmid: 13929601
 51. L. M. Silvaet al., Plasmin-mediated fibrinolysis enables
 macrophage migration in a murine model of inflammation.
 Blood 134 , 291–303 (2019). doi:10.1182/blood.2018874859;
 pmid: 31101623
 52. N. Dutzan, L. Abusleme, J. E. Konkel, N. M. Moutsopoulos,
 Isolation, Characterization and Functional Examination of the
 Gingival Immune Cell Network.J. Vis. Exp. 108 , e53736 (2016).
 doi:10.3791/53736; pmid: 26967370
 53. J. M. Prasadet al., Mice expressing a mutant form of fibrinogen
 that cannot support fibrin formation exhibit compromised
 antimicrobial host defense.Blood 126 , 2047–2058 (2015).
 doi:10.1182/blood-2015-04-639849; pmid: 26228483
 54. M. Swamydas, M. S. Lionakis, Isolation, purification and
 labeling of mouse bone marrow neutrophils for functional
 studies and adoptive transfer experiments.J. Vis. Exp. 77 ,
 e50586 (2013). doi:10.3791/50586; pmid: 23892876
 55. L. M. Silva, N. Moutsopoulos, T. H. Bugge, A. Doyle, Live Imaging
 and Quantification of Neutrophil Extracellular Trap Formation.
 Curr Protoc 1 , e157 (2021). doi:10.1002/cpz1.157; pmid: 34260822
 56. A. W. Strilchuket al., Sustained depletion of FXIII-A by inducing
 acquired FXIII-B deficiency.Blood 136 , 2946–2954 (2020).
 doi:10.1182/blood.2020004976; pmid: 32678423
 57. J. A. Kulkarniet al., On the Formation and Morphology of Lipid
 Nanoparticles Containing Ionizable Cationic Lipids and siRNA.
ACS Nano 12 , 4787–4795 (2018). doi:10.1021/
acsnano.8b01516; pmid: 29614232- A. Akincet al., Targeted delivery of RNAi therapeutics with
 endogenous and exogenous ligand-based mechanisms.Mol. Ther.
 18 , 1357–1364 (2010). doi:10.1038/mt.2010.85; pmid: 20461061
- K. Divariset al., Exploring the genetic basis of chronic periodontitis:
 A genome-wide association study.Hum. Mol. Genet. 22 ,
 2312 – 2324 (2013). doi:10.1093/hmg/ddt065; pmid: 23459936
- J. D. Beck, K. L. Moss, T. Morelli, S. Offenbacher, In search of
 appropriate measures of periodontal status: The Periodontal
 Profile Phenotype (P^3 ) system.J. Periodontol. 89 , 166– 175
 (2018). doi:10.1002/JPER.17-0424; pmid: 29520827
- T. Morelliet al., Derivation and Validation of the Periodontal
 and Tooth Profile Classification System for Patient
 Stratification.J. Periodontol. 88 , 153–165 (2017). doi:10.1902/
 jop.2016.160379; pmid: 27620653
- K. Divaris, K. Moss, J. D. Beck, Biologically informed
 stratification of periodontal disease holds the key to achieving
 precision oral health.J. Periodontol. 91 , S50–S55 (2020).
 doi:10.1002/JPER.20-0096; pmid: 32432812
- K. Divariset al., Genome-wide association study of periodontal
 pathogen colonization.J. Dent. Res. 91 , S21–S28 (2012).
 doi:10.1177/0022034512447951; pmid: 22699663
- R. P. Darveau, G. Hajishengallis, M. A. Curtis,Porphyromonas
 gingivalisas a potential community activist for disease.J. Dent.
 Res. 91 , 816–820 (2012). doi:10.1177/0022034512453589;
 pmid: 22772362
- A. V. Segrè, DIAGRAM Consortium, MAGIC investigators,
 L. Groop, V. K. Mootha, M. J. Daly, D. Altshuler, Common
 inherited variation in mitochondrial genes is not enriched for
 associations with type 2 diabetes or related glycemic traits.
 PLOS Genet. 6 , e1001058 (2010). doi:10.1371/journal.
 pgen.1001058; pmid: 20714348
- R. J. Pruimet al., LocusZoom: Regional visualization of genome-
 wide association scan results.Bioinformatics 26 , 2336– 2337
 (2010). doi:10.1093/bioinformatics/btq419; pmid: 20634204
- N. Segataet al., Metagenomic biomarker discovery and
 explanation.Genome Biol. 12 , R60 (2011). doi:10.1186/
 gb-2011-12-6-r60; pmid: 21702898
ACKNOWLEDGMENTS
We thank M. J. Danton for critically reviewing this manuscript. We
also thank the NCI microbiome sequencing core for assistance
with 16SrRNA sequencing and data deposition.Funding:This work
was funded by the NIH NIDCR Intramural Research Program (T.H.B.
and N.M.M.); NIDCR 1K99DE030124-01A1 (L.M.S.); NIDCR Veterinary
Resources Core (ZIC DE000740-05); NIDCR/NIDCD Genomics and
Computational Biology Core (ZIC DC000086); NIDCR Combined
Technical Research Core (ZIC DE000729-09); and NIDCR
U01DE025046 (C.S.A. and K.D.). This work was also supported in
part by NIH R01DK112778 and NIH R01CA211098 (M.J.F.), NIH
R01HL013423-43A1 (F.J.C.), and FONDECYT grant 11180505 (L.A.).
Author contributions:Conceptualization: L.M.S., T.H.B., and
N.M.M.; Formal analysis: L.M.S., D.M., K.M., C.S.A., and K.D.; Funding
acquisition: T.H.B. and N.M.M.; Investigation: L.M.S., A.D.D., T.G.-W.,
C.L.T., L.A., and C.E.Z.; Methodology: L.M.S., A.D.D., T.G.-W., N.D.,
C.L.T., L.A., E.M.C., A.G.L., C.E.Z., M.S., M.S.L., and M.J.F.; Project
administration: L.M.S., T.H.B., and N.M.M.; Resources: L.J.J., J.L.,
P.J., V.K., F.J.C., C.J.K., and M.J.F.; Software: A.D.D.; Visualization:
L.M.S.; Writing–original draft: L.M.S., A.D.D., K.D., T.H.B., and N.M.M.;
Writing–review and editing: all authors.Competing interests:
C.J.K. is a director and shareholder of NanoVation Therapeutics Inc.,
which is commercializing RNA-based therapies. C.J.K., L.J.J., and J.L.
are inventors on pending intellectual property related to RNA-based
therapies. The other authors declare that they have no competing
interests.Data and materials availability:RNA-seq data have been
deposited to the GEO database (record GSE178616) and can be
accessed using the token: ylkhyomevlszjuv. Sequencing data have
been deposited to the Sequence Read Archive (SRA) with the
BioProjectID PRJNA753711 (https://dataview.ncbi.nlm.nih.gov/object/
PRJNA753711?reviewer=a5barpkgib249d5v2res6mtgef). All other data
are available in the main text or supplementary materials.SUPPLEMENTARY MATERIALS
science.org/doi/10.1126/science.abl5450
Figs. S1 to S9
Tables S1 and S2
MDAR Reproducibility Checklist21 July 2021; accepted 29 October 2021
10.1126/science.abl5450Silvaet al.,Science 374 , eabl5450 (2021) 24 December 2021 11 of 11
RESEARCH | RESEARCH ARTICLE
