- Radon-222 can be produced from the α-decay of radium-226.
(a) Write the nuclear reaction.
(b) Calculate ∆E(in kJ) when 7.00 g of^22688 Radecays.
24 He=4 0015./g mole
(^22286) Rn=221 9703./g mole
(^22688) Ra=225 9771./g mole
(c) Calculate the mass defect of^22688 Ra.
1 mole protons = 1.00728 g
1 mole neutrons = 1.00867 g
atomic mass^22688 Ra=225 9771./g mole
(d) Calculate the binding energy (in kJ/mole) of^22688 Ra.
(e)^22688 Rahas a half-life of 1.62 × 103 yr. Calculate the first-order rate constant.
(f) Calculate the fraction of^22688 Rathat will remain after 100.0 yr.
Answer
- Given:^22286 Rnproduced by α-decay of^22688 Ra.
(a) Restatement: Nuclear reaction.
(^22688) Ra" (^22286) Rn+ (^42) He
(b) Given: 7.00 g of 88226 Radecays.
Restatement: Calculate ∆E(in kJ).
∆E= ∆mc^2
=900 10. ##^10 kJg ∆m
∆m= mass products −mass reactants
= 4.0015 g + 221.9703 g −225.9771 g
= −0.0053 g
.
.
..
E.
g
g
∆ 1
700
225 9771
1
1
0 0053 900 10
15 10
gRa
Ra
mole Ra
mole Ra g
(^88) kJ kJ
226
88
226
88
226
88
226
(^107)
= #### #
- =-
(c) Restatement: Mass defect of^22688 Ra.
..
..
.
moles protons g g
moles neutrons g g
g
88 88 1 00728 88 6406
138 138 1 00867 139 196
227 837
#
#
==
==+
mass defect = 227.837 g −225.9771 g = 1.860 g
Part II: Specific Topics