Amplifier Design 715(20-20)Upon choosing R 1 =R 2 , Eq. 20-20 dictates that
C 1 =4C 2. If C 1 is chosen to be 0.02μF, then C 2
becomes 0.005μF and Eq. 20-19 then requires that R 1
be 10 k:. The reasonableness of these values allows the
design to be concluded with the circuit of Fig. 20-17.
Example 2. Second-order Bessel low pass with a zero
frequency group delay of 500μs.
The required transfer function is(20-21)with Z 0 =1/500μs. Taking Fig. 20-16C along with its
transfer function leads to the identification
(20-22)from which it is found that
(20-23)and
(20-24)Upon choosing R 1 = R 2 , Eq. 20-24 requires that
Figure 20-17. Third-octave unity gain Butterworth low-pass
filter with fo = 500 Hz.1
R 1 R 2 C 1 C 2------------------------------R 1 C 2 +R 2 C 2
R 1 R 2 C 1 C 2--------------------------------
©¹
=§· k 7 MF k 7 k 7 MF MFVin
Vout+V 0
Vin-------3 Z 02S2
3 Z 0 S 3 Z 02
++=-------------------------------------------3 Z 02S2
3 Z 0 S 3 Z 02
++-------------------------------------------1
R 1 R 2 C 1 C 2--------------------------S^2R 1 C 2 +R 2 C 2
R 1 R 2 C 1 C 2--------------------------------
©¹§·S^1
R 1 R 2 C 1 C 2++---------------------------------------------------------------------------------------------------------------=Z 0 1
3 R 1 R 2 C 1 C 2=---------------------------------3
3 R 1 R 2 C 1 C 2---------------------------------R 1 C 2 +R 2 C 2
R 1 R 2 C 1 C 2=--------------------------------Table 20-1. Transfer Functions of Various Circuits of
Figure 20-16
Figure K Transfer function20-16A = 120-16B = 120-16C = 120-16D = 120-16At 120-16Bt 120-16Ct 120-16Dt 120-16Ft 1Vo
----- -Vi1
RC--------S RC-------^1 -+=-----------------Vo
Vi----- - S
S^1
RC--------+=-----------------Vo
Vi----- -1
R 1 R 2 C 1 C 2--------------------------S^2R 1 C 2 +R 2 C 2
R 1 R 2 C 1 C 2
©¹§·--------------------------------S^1
R 1 R 2 C 1 C 2++--------------------------=--------------------------------------------------------------------------------------Vo
Vi----- - S2S^2R 1 C 2 +R 1 C 1
©¹--------------------------------R 1 R 2 C 1 C 2§·S^1
R 1 R 2 C 1 C 2++--------------------------=--------------------------------------------------------------------------------------Vo
Vi----- -K^1
RC
©¹§·--------S RC-------^1 -+------------------=Vo
Vi----- - KS
S^1
RC--------+=-----------------Vo
Vi----- -KR^1
1 R 2 C 1 C 2
©¹§·--------------------------S^2R 1 C 2 ++R 2 C 2 1 – KR 1 C 1
R 1 R 2 C 1 C 2
©¹§·----------------------------------------------------------------------S^1
++R-------------------------- 1 R 2 C 1 C 2----------------------------------------------------------------------------------------------------------------------------=Vo
Vi----- -KS^2
S^2R 1 C 2 ++R 1 C 1 1 – KR 2 C 2
©¹---------------------------------------------------------------------R 1 R 2 C 1 C 2 -§·S^1
R 1 R 2 C 1 C 2++------------------------------------------------------------------------------------------------------------------------------------------------------=Vo
Vi----- -KS
R 1 C----------S^23 R 1 R 2 C+ 1 – KR 12 C
R 12 R 2 C^2--------------------------------------------------------
©¹̈ ̧§·
SR 1 +R 2
R 12 R 2 C^2++-------------------=-------------------------------------------------------------------------------------------------------orVo
Vi----- -Ao
Q
©¹§·----- -ZoSS^2Zo
©¹------Q§·S Z
o
++^2=----------------------------------------