Amplifier Design 715
(20-20)
Upon choosing R 1 =R 2 , Eq. 20-20 dictates that
C 1 =4C 2. If C 1 is chosen to be 0.02μF, then C 2
becomes 0.005μF and Eq. 20-19 then requires that R 1
be 10 k:. The reasonableness of these values allows the
design to be concluded with the circuit of Fig. 20-17.
Example 2. Second-order Bessel low pass with a zero
frequency group delay of 500μs.
The required transfer function is
(20-21)
with Z 0 =1/500μs. Taking Fig. 20-16C along with its
transfer function leads to the identification
(20-22)
from which it is found that
(20-23)
and
(20-24)
Upon choosing R 1 = R 2 , Eq. 20-24 requires that
Figure 20-17. Third-octave unity gain Butterworth low-pass
filter with fo = 500 Hz.
1
R 1 R 2 C 1 C 2
------------------------------
R 1 C 2 +R 2 C 2
R 1 R 2 C 1 C 2
--------------------------------
©¹
=§·
k 7
MF
k 7 k 7
MF
MF
Vin
Vout
+
V 0
Vin
-------
3 Z 02
S
2
3 Z 0 S 3 Z 0
2
++
=-------------------------------------------
3 Z 02
S
2
3 Z 0 S 3 Z 0
2
++
-------------------------------------------
1
R 1 R 2 C 1 C 2
--------------------------
S^2
R 1 C 2 +R 2 C 2
R 1 R 2 C 1 C 2
--------------------------------
©¹
§·S^1
R 1 R 2 C 1 C 2
++--------------------------
-------------------------------------------------------------------------------------
=
Z 0 1
3 R 1 R 2 C 1 C 2
=---------------------------------
3
3 R 1 R 2 C 1 C 2
---------------------------------
R 1 C 2 +R 2 C 2
R 1 R 2 C 1 C 2
=--------------------------------
Table 20-1. Transfer Functions of Various Circuits of
Figure 20-16
Figure K Transfer function
20-16A = 1
20-16B = 1
20-16C = 1
20-16D = 1
20-16At 1
20-16Bt 1
20-16Ct 1
20-16Dt 1
20-16Ft 1
Vo
----- -Vi
1
RC
--------
S RC-------^1 -+
=-----------------
Vo
Vi
----- - S
S^1
RC
--------+
=-----------------
Vo
Vi
----- -
1
R 1 R 2 C 1 C 2
--------------------------
S^2
R 1 C 2 +R 2 C 2
R 1 R 2 C 1 C 2
©¹§·--------------------------------S^1
R 1 R 2 C 1 C 2
++--------------------------
=--------------------------------------------------------------------------------------
Vo
Vi
----- - S
2
S^2
R 1 C 2 +R 1 C 1
©¹--------------------------------R 1 R 2 C 1 C 2
§·S^1
R 1 R 2 C 1 C 2
++--------------------------
=--------------------------------------------------------------------------------------
Vo
Vi
----- -
K^1
RC
©¹§·--------
S RC-------^1 -+
------------------=
Vo
Vi
----- - KS
S^1
RC
--------+
=-----------------
Vo
Vi
----- -
KR^1
1 R 2 C 1 C 2
©¹§·--------------------------
S^2
R 1 C 2 ++R 2 C 2 1 – KR 1 C 1
R 1 R 2 C 1 C 2
©¹§·----------------------------------------------------------------------S^1
++R-------------------------- 1 R 2 C 1 C 2
----------------------------------------------------------------------------------------------------------------------------
=
Vo
Vi
----- -
KS^2
S^2
R 1 C 2 ++R 1 C 1 1 – KR 2 C 2
©¹---------------------------------------------------------------------R 1 R 2 C 1 C 2 -
§·S^1
R 1 R 2 C 1 C 2
++--------------------------
----------------------------------------------------------------------------------------------------------------------------
=
Vo
Vi
----- -
KS
R 1 C
----------
S^2
3 R 1 R 2 C+ 1 – KR 12 C
R 12 R 2 C^2
--------------------------------------------------------
©¹
̈ ̧
§·
S
R 1 +R 2
R 12 R 2 C^2
++-------------------
=-------------------------------------------------------------------------------------------------------
or
Vo
Vi
----- -
Ao
Q
©¹§·----- -ZoS
S^2
Zo
©¹------Q
§·S Z
o
++^2
=----------------------------------------