Quantum Mechanics for Mathematicians

(lily) #1

We first need to change coordinates from rectangular to spherical in our
expressions forL 3 ,L±. Using the chain rule to compute expressions like



∂r

f(x 1 (r,θ,φ),x 2 (r,θ,φ),x 3 (r,θ,φ))

we find



∂r∂
∂θ∂
∂φ


=



sinθcosφ sinθsinφ cosθ
rcosθcosφ rcosθsinφ −rsinθ
−rsinθsinφ rsinθcosφ 0






∂x 1

∂x 2

∂x 3



so 




1 ∂r
r


1 ∂θ
rsinθ


∂φ


=



sinθcosφ sinθsinφ cosθ
cosθcosφ cosθsinφ −sinθ
−sinφ cosφ 0






∂x 1

∂x∂ 2
∂x 3



This is an orthogonal matrix, so can be inverted by taking its transpose, to get



∂x 1

∂x∂ 2
∂x 3


=



sinθcosφ cosθcosφ −sinφ
sinθsinφ cosθsinφ cosφ
cosθ −sinθ 0






1 ∂r
r


1 ∂θ
rsinθ


∂φ



So we finally have

L 1 =iρ′(l 1 ) =i

(

x 3


∂x 2

−x 2


∂x 3

)

=i

(

sinφ


∂θ

+ cotθcosφ


∂φ

)

L 2 =iρ′(l 2 ) =i

(

x 1


∂x 3

−x 3


∂x 1

)

=i

(

−cosφ


∂θ

+ cotθsinφ


∂φ

)

L 3 =iρ′(l 3 ) =i

(

x 2


∂x 1

−x 1


∂x 2

)

=−i


∂φ

and


L+=iρ′(l+) =eiφ


(


∂θ
+icotθ


∂φ

)

, L−=iρ′(l−) =e−iφ

(



∂θ
+icotθ


∂φ

)

Now that we have expressions for the action of the Lie algebra on functions in
spherical coordinates, our two differential equations saying our functionYll(θ,φ)
is of weightland in the highest weight space are


L 3 Yll(θ,φ) =−i


∂φ

Yll(θ,φ) =lYll(θ,φ)

and


L+Yll(θ,φ) =eiφ

(


∂θ

+icotθ


∂φ

)

Yll(θ,φ) = 0

The first of these tells us that


Yll(θ,φ) =eilφFl(θ)
Free download pdf