Quantum Mechanics for Mathematicians

(lily) #1

Tψ, one has


FtTψ[f]≡Tψ[Ff]

=Tψ

[

1


2 π

∫+∞

−∞

e−ikqf(q)dq

]

=

1


2 π

∫+∞

−∞

ψ(k)

(∫+∞

−∞

e−ikqf(q)dq

)

dk

=

∫+∞

−∞

(

1


2 π

∫+∞

−∞

e−ikqψ(k)dk

)

f(q)dq

=TFψ[f]

showing that the Fourier transform is compatible with this identification.
As an example, the Fourier transform of the distribution √^12 πeikais the


δ-functionδ(q−a) since


FtT√^1
2 πe
ika[f] =

1


2 π

∫+∞

−∞

eika

(

1


2 π

∫+∞

−∞

e−ikqf(q)dq

)

dk

=

∫+∞

−∞

(

1

2 π

∫+∞

−∞

e−ik(q−a)dk

)

f(q)dq

=

∫+∞

−∞

δ(q−a)f(q)dq

=Tδ(q−a)[f]
For another example of a linear transformation acting onS(R), consider the
translation action on functionsf→Aaf, where


(Aaf)(q) =f(q−a)

The transpose action on distributions is


AtaTψ(q)=Tψ(q+a)

since


AtaTψ(q)[f] =Tψ(q)[f(q−a)] =

∫+∞

−∞

ψ(q)f(q−a)dq=

∫+∞

−∞

ψ(q′+a)f(q′)dq′

The derivative is an infinitesimal version of this, and one sees (using inte-
gration by parts), that
(
d
dq


)t
Tψ(q)[f] =Tψ(q)

[

d
dq

f

]

=

∫+∞

−∞

ψ(q)

d
dq

f(q)dq

=

∫+∞

−∞

(


d
dq

ψ(q)

)

f(q)dq

=T−dqdψ(q)[f]
Free download pdf