Tψ, one has
FtTψ[f]≡Tψ[Ff]=Tψ[
1
√
2 π∫+∞
−∞e−ikqf(q)dq]
=
1
√
2 π∫+∞
−∞ψ(k)(∫+∞
−∞e−ikqf(q)dq)
dk=
∫+∞
−∞(
1
√
2 π∫+∞
−∞e−ikqψ(k)dk)
f(q)dq=TFψ[f]showing that the Fourier transform is compatible with this identification.
As an example, the Fourier transform of the distribution √^12 πeikais the
δ-functionδ(q−a) since
FtT√^1
2 πe
ika[f] =1
√
2 π∫+∞
−∞eika(
1
√
2 π∫+∞
−∞e−ikqf(q)dq)
dk=
∫+∞
−∞(
1
2 π∫+∞
−∞e−ik(q−a)dk)
f(q)dq=
∫+∞
−∞δ(q−a)f(q)dq=Tδ(q−a)[f]
For another example of a linear transformation acting onS(R), consider the
translation action on functionsf→Aaf, where
(Aaf)(q) =f(q−a)The transpose action on distributions is
AtaTψ(q)=Tψ(q+a)since
AtaTψ(q)[f] =Tψ(q)[f(q−a)] =∫+∞
−∞ψ(q)f(q−a)dq=∫+∞
−∞ψ(q′+a)f(q′)dq′The derivative is an infinitesimal version of this, and one sees (using inte-
gration by parts), that
(
d
dq
)t
Tψ(q)[f] =Tψ(q)[
d
dqf]
=
∫+∞
−∞ψ(q)d
dqf(q)dq=
∫+∞
−∞(
−
d
dqψ(q))
f(q)dq=T−dqdψ(q)[f]