Quantum Mechanics for Mathematicians

(lily) #1

Definition(Schr ̈odinger representation, Lie algebra version).The Schr ̈odinger
representation of the Heisenberg Lie algebrah 3 is the representation(Γ′S,L^2 (R))
satisfying


Γ′S(X)ψ(q) =−iQψ(q) =−iqψ(q), Γ′S(Y)ψ(q) =−iPψ(q) =−

d
dq

ψ(q)

Γ′S(Z)ψ(q) =−iψ(q)
Factors ofihave been chosen to make these operators skew-adjoint and the
representation thus unitary. They can be exponentiated, giving in the exponen-
tial coordinates onH 3 of equation 13.2


ΓS

(((

x
0

)

, 0

))

ψ(q) =e−xiQψ(q) =e−ixqψ(q)

ΓS

(((

0

y

)

, 0

))

ψ(q) =e−yiPψ(q) =e−y
dqd
ψ(q) =ψ(q−y)

ΓS

(((

0

0

)

,z

))

ψ(q) =e−izψ(q)

For general group elements ofH 3 one has:


Definition(Schr ̈odinger representation, Lie group version). The Schr ̈odinger
representation of the Heisenberg Lie groupH 3 is the representation(ΓS,L^2 (R))
satisfying


ΓS

(((

x
y

)

,z

))

ψ(q) =e−izei

xy

(^2) e−ixqψ(q−y) (13.3)
To check that this defines a representation, one computes
ΓS


(((

x
y

)

,z

))

ΓS

(((

x′
y′

)

,z′

))

ψ(q)

=ΓS

(((

x
y

)

,z

))

e−iz


ei

x′ 2 y′
e−ix

′q
ψ(q−y′)

=e−i(z+z

′)
ei

xy+x′y′

(^2) e−ixqe−ix′(q−y)ψ(q−y−y′)
=e−i(z+z
′+ (^12) (xy′−yx′))
ei
(x+x′)(y+y′)
(^2) e−i(x+x′)qψ(q−(y+y′))
=ΓS


(((

x+x′
y+y′

)

,z+z′+

1

2

(xy′−yx′)

))

ψ(q)

The group analog of the Heisenberg commutation relations (often called the
“Weyl form” of the commutation relations) is the relation


e−ixQe−iyP=e−ixye−iyPe−ixQ

This can be derived by using the explicit representation operators in equation
13.3 (or the Baker-Campbell-Hausdorff formula and the Heisenberg commuta-
tion relations) to compute


e−ixQe−iyP=e−i(xQ+yP)+

(^12) [−ixQ,−iyP]
=e−i
xy
(^2) e−i(xQ+yP)

Free download pdf