DHARM
354 GEOTECHNICAL ENGINEERING
shear stress acts. In Fig. 10.1 (c), the cylindrical co-ordinates and the corresponding normal
stresses—radial stress σr, tangential stress σt, and the shear stress τrz—are shown; σz is an-
other principal stress in the cylindrical co-ordinates; the polar radial stress σR is also shown.
R= x+y+z
Ö
222
r= x +y
Ö 22
y
sy
z
sx A
Y Z¢
Z¢
Q
O
Y¢
x
X¢ X
q
(a) (b) (c)
sz
tzx
tzy
sx
tyz txy
tyx
sy
Z
Q
sR
trz
sr
st
Z¢
sz
txz
q
Fig. 10.1 Notation for Boussinesq’s analysis
The Boussinesq equations are as follows:
σz =
3
2
3
5
Qz
π R
. ...(Eq. 10.2 (a))
=
3
2
2
2
Q
π z
θ
.
cos
...(Eq. 10.2 (b))
=
3
2
3
2252
Qz
π rz
.
()+ /
...(Eq. 10.2 (c))
=
3
2
1
(^221)
52
Q
π+zrz
L
N
M
M
O
Q
P
(/ )P
/
...(Eq. 10.2 (d))
σx = Qxz
R
xy
Rr R z
yz
(^2) Rr
(^3212)
5
22
2
2
π −−υ^32
−
R
S
T
U
V
W
L
N
M
M
O
Q
P
P
()
()
...(Eq. 10.3)
σy =
Qyz
R
yx
Rr R z
xz
(^2) Rr
(^3212)
5
22
2
2
π −−υ^32
−
R
S
T
U
V
W
L
N
M
M
O
Q
P
P
()
()
...(Eq. 10.4)
σR =
3
2 2
Q
π R
.cosθ
...(Eq. 10.5)
σr =
Qzr
(^2) R RR z
3122
π^2
− − υ
L
N
M
O
Q
P
()
()
...(Eq. 10.6 (a))