Geotechnical Engineering

(Jeff_L) #1
DHARM

354 GEOTECHNICAL ENGINEERING

shear stress acts. In Fig. 10.1 (c), the cylindrical co-ordinates and the corresponding normal
stresses—radial stress σr, tangential stress σt, and the shear stress τrz—are shown; σz is an-
other principal stress in the cylindrical co-ordinates; the polar radial stress σR is also shown.


R= x+y+z
Ö
222

r= x +y
Ö 22

y

sy

z

sx A

Y Z¢


Q
O


x
X¢ X

q

(a) (b) (c)

sz

tzx
tzy
sx
tyz txy
tyx
sy

Z

Q

sR

trz

sr

st

sz

txz

q

Fig. 10.1 Notation for Boussinesq’s analysis
The Boussinesq equations are as follows:

σz =

3
2

3
5

Qz
π R

. ...(Eq. 10.2 (a))


=

3
2

2
2

Q
π z

θ
.

cos
...(Eq. 10.2 (b))

=

3
2

3
2252

Qz
π rz

.
()+ /

...(Eq. 10.2 (c))

=

3
2

1

(^221)
52
Q
π+zrz
L
N
M
M
O
Q
P
(/ )P
/
...(Eq. 10.2 (d))
σx = Qxz
R
xy
Rr R z
yz
(^2) Rr
(^3212)
5
22
2
2
π −−υ^32






  • R
    S
    T
    U
    V
    W
    L
    N
    M
    M
    O
    Q
    P
    P
    ()
    ()
    ...(Eq. 10.3)
    σy =
    Qyz
    R
    yx
    Rr R z
    xz
    (^2) Rr
    (^3212)
    5
    22
    2
    2
    π −−υ^32






  • R
    S
    T
    U
    V
    W
    L
    N
    M
    M
    O
    Q
    P
    P
    ()
    ()
    ...(Eq. 10.4)
    σR =
    3
    2 2
    Q
    π R
    .cosθ
    ...(Eq. 10.5)
    σr =
    Qzr
    (^2) R RR z
    3122
    π^2
    − − υ




  • L
    N
    M
    O
    Q
    P
    ()
    ()
    ...(Eq. 10.6 (a))



Free download pdf