DHARM
STRESS DISTRIBUTION IN SOIL 383
(i) Square Area:
Imagine, as in Fig. 10.25, the area to be divided into four equal squares. The stress at A
will be four times the stress produced under the corner of the small square.
4m
4m
4m
A
Fig. 10.25 Uniform load on square area (Ex. 10.7)
m = 2/4 = 0.5, n = 2/4 = 0.5
Iσ =
1
4
21
1
2
1
21
1
22
22 22
22
22
1
22
π^2222
mn m n
mn mn
mn
mn
mn m n
mn mn
++
+++
++
++
+
++
++−
L
N
M
M
O
Q
P
P
.tan−
=
1
4
205 05025 0251
150 025 025
025 025 2
025 025 1
205050250251
150 025 025
1
π
×× + +
+×
++
++
+
×× + +
−×
L
N
M
M
O
Q
P
P
.... −
...
. ..
..
tan
....
...
=
1
4
05 15
1 5625
250
150
05 15
1 4375
1
π
..
.
.
.
tan ..
.
×+
L
N
M
M
O
Q
P
P
− = 0.0840
(The value may be obtained from Tables or Charts also.)
∴σz = 4 × 200 × 0.084 = 67.2 kN/m^2
(ii) Equivalent point load method:
Q = 200 × 16 = 3200 kN
σz = Q
zrz^2 2 52^52
32
1
3200
16
32
1
.
(/ )
[(/)]
(/ )
//
ππ
+
=× = 95.5 kN/m^2
(iii) Four equivalent point loads:
From Example 10.3, σz = 71.14 kN/m^2
Thus, percentage error in the equivalent point load method
=
(. .)
.
95 5 67 2
67 2
− × (^100) = 42.11
Percentage error in four equivalent point loads approach
(. .)
.
7114 67 20
67 20
− × (^100) = 5.86.
Example 10.8: A rectangular foundation, 2 m × 4 m, transmits a uniform pressure of 450 kN/m^2
to the underlying soil. Determine the vertical stress at a depth of 1 metre below the foundation
at a point within the loaded area, 1 metre away from a short edge and 0.5 metre away from a
long edge. Use Boussinesq’s theory.