Geotechnical Engineering

(Jeff_L) #1
DHARM

STRESS DISTRIBUTION IN SOIL 383


(i) Square Area:
Imagine, as in Fig. 10.25, the area to be divided into four equal squares. The stress at A
will be four times the stress produced under the corner of the small square.


4m

4m

4m
A
Fig. 10.25 Uniform load on square area (Ex. 10.7)
m = 2/4 = 0.5, n = 2/4 = 0.5

Iσ =

1
4

21
1

2
1

21
1

22
22 22

22
22

1

22

π^2222

mn m n
mn mn

mn
mn

mn m n
mn mn

++
+++

++
++

+

++
++−

L


N


M
M

O


Q


P
P

.tan−

=

1
4

205 05025 0251
150 025 025

025 025 2
025 025 1

205050250251
150 025 025

1
π

×× + +

++
++

+

×× + +
−×

L


N


M
M

O


Q


P
P

.... −
...

. ..
..


tan

....
...

=

1
4

05 15
1 5625

250
150

05 15
1 4375

1
π

..
.

.
.

tan ..
.

×+

L


N


M
M

O


Q


P
P

− = 0.0840

(The value may be obtained from Tables or Charts also.)
∴σz = 4 × 200 × 0.084 = 67.2 kN/m^2
(ii) Equivalent point load method:
Q = 200 × 16 = 3200 kN

σz = Q
zrz^2 2 52^52

32
1

3200
16

32
1

.

(/ )
[(/)]

(/ )
//

ππ
+

=× = 95.5 kN/m^2

(iii) Four equivalent point loads:
From Example 10.3, σz = 71.14 kN/m^2
Thus, percentage error in the equivalent point load method

=

(. .)
.

95 5 67 2
67 2

− × (^100) = 42.11
Percentage error in four equivalent point loads approach


(. .)
.
7114 67 20
67 20
− × (^100) = 5.86.
Example 10.8: A rectangular foundation, 2 m × 4 m, transmits a uniform pressure of 450 kN/m^2
to the underlying soil. Determine the vertical stress at a depth of 1 metre below the foundation
at a point within the loaded area, 1 metre away from a short edge and 0.5 metre away from a
long edge. Use Boussinesq’s theory.

Free download pdf