DHARMSTRESS DISTRIBUTION IN SOIL 383
(i) Square Area:
Imagine, as in Fig. 10.25, the area to be divided into four equal squares. The stress at A
will be four times the stress produced under the corner of the small square.
4m4m4m
A
Fig. 10.25 Uniform load on square area (Ex. 10.7)
m = 2/4 = 0.5, n = 2/4 = 0.5Iσ =1
421
12
121
122
22 2222
22122π^2222mn m n
mn mnmn
mnmn m n
mn mn++
+++++
+++++
++−L
N
M
MO
Q
P
P.tan−=1
4205 05025 0251
150 025 025025 025 2
025 025 1205050250251
150 025 0251
π×× + +
+×++
+++×× + +
−×L
N
M
MO
Q
P
P.... −
.... ..
..
tan....
...=1
405 15
1 5625250
15005 15
1 43751
π..
..
.tan ..
.×+L
N
M
MO
Q
P
P− = 0.0840(The value may be obtained from Tables or Charts also.)
∴σz = 4 × 200 × 0.084 = 67.2 kN/m^2
(ii) Equivalent point load method:
Q = 200 × 16 = 3200 kNσz = Q
zrz^2 2 52^5232
13200
1632
1.(/ )
[(/)](/ )
//ππ
+=× = 95.5 kN/m^2(iii) Four equivalent point loads:
From Example 10.3, σz = 71.14 kN/m^2
Thus, percentage error in the equivalent point load method=(. .)
.95 5 67 2
67 2− × (^100) = 42.11
Percentage error in four equivalent point loads approach
(. .)
.
7114 67 20
67 20
− × (^100) = 5.86.
Example 10.8: A rectangular foundation, 2 m × 4 m, transmits a uniform pressure of 450 kN/m^2
to the underlying soil. Determine the vertical stress at a depth of 1 metre below the foundation
at a point within the loaded area, 1 metre away from a short edge and 0.5 metre away from a
long edge. Use Boussinesq’s theory.