DHARM384 GEOTECHNICAL ENGINEERING
Depth z = 1 m. q = 450 kN/m^22m4mPW Q1mSV RTUIV IIIII
IA¢0.5 mFig. 10.26 Stress at a point inside a loaded area (Ex. 10.8)
The loaded area and the plan position of the point A′ at which the vertical stress is
required are shown in Fig. 10.26. The area is divided into four parts as shown, such that A′
forms a corner of each.
σz = qIσσ σ σIIIIIIIV++ +I I I
Area I: m = 1/1 = 1; n = 1.5/1 = 1.5IσI =1
421
12
121
122
22 2222
22122π^2222mn m n
mn mnmn
mnmn m n
mn mn++
+++++
+++++
++−L
N
M
MO
Q
P
P.tan−=1
421151 15 1
1151115115 2
115121151 15 1
115111522
22 2222
22122π 22 22×× + +
+++×++
+++×× + +
++−×L
N
M
MO
Q
P
P.. −
....
.
tan..
..= 0.1936
Area II: m = 1.5/1 = 1.5; n = 3/1 = 3IσII =1
4215315 3 1
15 3 1 15 315 3 2
15 3 1215315 3 1
15 3 1 15 322
22 2222
22122
π^2222×× ++
+++ ×++
+++×× ++
++− ×L
N
M
MO
Q
P
P.. −
....
.tan..
..= 0.2290
Area III: m = 0.5/1 = 0.5; N = 3/1 = 3IσIII =1
4205305 3 1
05 3 1 05 30532
05 3 1205305 3 1
05 3 1 05 3222
22 2222
22122π^2222×× ++
+++ ×++
+++×× ++
++− ×L
N
M
MO
Q
P
P.. −
....
.tan..
..= 0.1368
Area IV: m = 0.5/1 = 0.5; n = 1/1 = 1IσIV =1
4205105 1 1
051105105 1 2
0511205105 1 1
05 1 1 05 122
22 2222
22122
π^2222×× ++
+++ ×++
+++×× ++
++− ×L
N
M
MO
Q
P
P.. −
....
.
tan..
..= 0.1202