DHARMSTRESS DISTRIBUTION IN SOIL 385∴σz = 450(0.1936 + 0.2290 + 0.1368 + 0.1202)
= 305.8 kN/m^2.
Example 10.9: A rectangular foundation 2 m × 3 m, transmits a pressure of 360 kN/m^2 to the
underlying soil. Determine the vertical stress at a point 1 metre vertically below a point lying
outside the loaded area, 1 metre away from a short edge and 0.5 metre away from a long edge.
Use Boussinesq’s theory.
z = 1 m; q = 360 kN/m^2
since the point at which the stress is required is outside the loaded area, rectangles are imag-
ined as shown in Fig. 10.27, so as to make A′ a corner of all the concerned rectangle. With the
notation of Fig. 10.27,
σz = qIdiσσ σ σIIIIIIIV−− −I I I
Area I: m = 2.5/1 = 2.5; n = 4/1 = 4IσI =^1
421
12
121
122
22 2222
22122π^2222mn m n
mn mnmn
mnmn m n
mn mn++
+++++
+++++
++−L
N
M
MO
Q
P
P.tan−2m3mP Q WUS VA¢
0.5
m
RT1mPWA T :
SV¢ I
AT
QWA U
PWA U¢:
¢:
¢:II
III
IVFig. 10.27 Stress at a point outside loaded area (Ex. 10.9)=1
4225425 4 1
25 4 1 25 425 4 2
25 4 1225425 4 1
25 4 1 25 422
22 2222
22122π^2222×× ++
+++ ×++
+++×× ++
++− ×L
N
M
MO
Q
P
P.. −
....
.tan..
..
= 0.2434
Area II: m = 0.5/1 = 0.5; n = 4/1 = 4IσII =^1
4205405 4 1
05 4 1 05 40542
05 4 1205405 4 1
05 4 1 05 422
22 2222
22122π^2222×× ++
+++ ×++
+++×× ++
++− ×L
N
M
MO
Q
P
P.. −
....
.tan..
..= 0.1372
Area III: m = 1/1 = 1; n = 2.5/1 = 2.5IσIII=^1
421251 25 1
12511251252
125121251 25 1
125112522
22 2222
22122π 22 22×× + +
+++×++
+++×× + +
++−×L
N
M
MO
Q
P
P.. −
....
.
tan..
..= 0.2024