Geotechnical Engineering

(Jeff_L) #1
DHARM

STRESS DISTRIBUTION IN SOIL 385

∴σz = 450(0.1936 + 0.2290 + 0.1368 + 0.1202)
= 305.8 kN/m^2.
Example 10.9: A rectangular foundation 2 m × 3 m, transmits a pressure of 360 kN/m^2 to the
underlying soil. Determine the vertical stress at a point 1 metre vertically below a point lying
outside the loaded area, 1 metre away from a short edge and 0.5 metre away from a long edge.
Use Boussinesq’s theory.
z = 1 m; q = 360 kN/m^2
since the point at which the stress is required is outside the loaded area, rectangles are imag-
ined as shown in Fig. 10.27, so as to make A′ a corner of all the concerned rectangle. With the
notation of Fig. 10.27,


σz = qIdiσσ σ σIIIIIIIV−− −I I I
Area I: m = 2.5/1 = 2.5; n = 4/1 = 4

IσI =^1
4

21
1

2
1

21
1

22
22 22

22
22

1

22

π^2222

mn m n
mn mn

mn
mn

mn m n
mn mn

++
+++

++
++

+

++
++−

L


N


M
M

O


Q


P
P

.tan−

2m

3m

P Q W

U

S V


0.5
m
R

T

1m

PWA T :
SV

¢ I
AT
QWA U
PWA U

¢:
¢:
¢:

II
III
IV

Fig. 10.27 Stress at a point outside loaded area (Ex. 10.9)

=

1
4

225425 4 1
25 4 1 25 4

25 4 2
25 4 1

225425 4 1
25 4 1 25 4

22
22 22

22
22

1

22

π^2222

×× ++
+++ ×

++
++

+

×× ++
++− ×

L


N


M
M

O


Q


P
P

.. −
..

.

.
.

tan

..
..
= 0.2434
Area II: m = 0.5/1 = 0.5; n = 4/1 = 4

IσII =^1
4

205405 4 1
05 4 1 05 4

0542
05 4 1

205405 4 1
05 4 1 05 4

22
22 22

22
22

1

22

π^2222

×× ++
+++ ×

++
++

+

×× ++
++− ×

L


N


M
M

O


Q


P
P

.. −
..

.

.
.

tan

..
..

= 0.1372
Area III: m = 1/1 = 1; n = 2.5/1 = 2.5

IσIII=^1
4

21251 25 1
1251125

1252
1251

21251 25 1
1251125

22
22 22

22
22

1

22

π 22 22

×× + +
+++×

++
++

+

×× + +
++−×

L


N


M
M

O


Q


P
P

.. −
..

..
.


tan

..
..

= 0.2024
Free download pdf