DHARM
STRESS DISTRIBUTION IN SOIL 385
∴σz = 450(0.1936 + 0.2290 + 0.1368 + 0.1202)
= 305.8 kN/m^2.
Example 10.9: A rectangular foundation 2 m × 3 m, transmits a pressure of 360 kN/m^2 to the
underlying soil. Determine the vertical stress at a point 1 metre vertically below a point lying
outside the loaded area, 1 metre away from a short edge and 0.5 metre away from a long edge.
Use Boussinesq’s theory.
z = 1 m; q = 360 kN/m^2
since the point at which the stress is required is outside the loaded area, rectangles are imag-
ined as shown in Fig. 10.27, so as to make A′ a corner of all the concerned rectangle. With the
notation of Fig. 10.27,
σz = qIdiσσ σ σIIIIIIIV−− −I I I
Area I: m = 2.5/1 = 2.5; n = 4/1 = 4
IσI =^1
4
21
1
2
1
21
1
22
22 22
22
22
1
22
π^2222
mn m n
mn mn
mn
mn
mn m n
mn mn
++
+++
++
++
+
++
++−
L
N
M
M
O
Q
P
P
.tan−
2m
3m
P Q W
U
S V
A¢
0.5
m
R
T
1m
PWA T :
SV
¢ I
AT
QWA U
PWA U
¢:
¢:
¢:
II
III
IV
Fig. 10.27 Stress at a point outside loaded area (Ex. 10.9)
=
1
4
225425 4 1
25 4 1 25 4
25 4 2
25 4 1
225425 4 1
25 4 1 25 4
22
22 22
22
22
1
22
π^2222
×× ++
+++ ×
++
++
+
×× ++
++− ×
L
N
M
M
O
Q
P
P
.. −
..
.
.
.
tan
..
..
= 0.2434
Area II: m = 0.5/1 = 0.5; n = 4/1 = 4
IσII =^1
4
205405 4 1
05 4 1 05 4
0542
05 4 1
205405 4 1
05 4 1 05 4
22
22 22
22
22
1
22
π^2222
×× ++
+++ ×
++
++
+
×× ++
++− ×
L
N
M
M
O
Q
P
P
.. −
..
.
.
.
tan
..
..
= 0.1372
Area III: m = 1/1 = 1; n = 2.5/1 = 2.5
IσIII=^1
4
21251 25 1
1251125
1252
1251
21251 25 1
1251125
22
22 22
22
22
1
22
π 22 22
×× + +
+++×
++
++
+
×× + +
++−×
L
N
M
M
O
Q
P
P
.. −
..
..
.
tan
..
..
= 0.2024