Geotechnical Engineering

(Jeff_L) #1
DHARM

464 GEOTECHNICAL ENGINEERING


()/
()/

σσ
σσ

13
13

2
2


+

= sin φ

or (σ 1 – σ 3 ) = (σ 1 + σ 3 ) sin φ ...(Eq. 13.13)


OG = OC. cosβ = [(σ 1 + σ 3 )/2] cos β
CG = OC. sin β = [(σ 1 + σ 3 )/2] sin β

FG = GE = CF^22 CG 132 13

2
2
2

−= − −RS +
T

U
V
W

{(σσ) / } ()σσsinβ

= [(σ 1 + σ 3 )/2] sin^22 φβ−sin , using Eq. 13.13.

Now, σv = OG + GE =

()
cos

()
sin sin

σσ
β

σσ

(^131322) φβ
22









  • σv =
    ()
    (cos sin sin )
    σσ
    (^13) βφβ^22
    2




  • +−
    or σv =
    ()
    (cos cos cos )
    σσ
    (^13) ββφ 22
    2




  • +− ...(Eq. 13.14)
    σl = OG – FG =
    σσ
    β
    σσ
    (^131322) φβ
    22
    F +
    HG
    I
    KJ

    F +
    HG
    I
    KJ
    cos sin −sin
    σl =
    σσ
    (^13) βφβ 22
    2
    F +
    HG
    I
    KJ
    (cos −−sin sin )
    or σl =
    σσ
    (^13) ββφ 22
    2
    F +
    HG
    I
    KJ
    (cos −−cos cos ) ...(Eq. 13.15)
    σ
    σ
    l
    v
    = K =
    cos cos cos
    cos cos cos
    ββφ
    ββφ
    −−
    +−
    22
    22 ...(Eq. 13.16)
    K is known as the ‘Conjugate ratio’.
    Using Eq. 13.12,
    σl = γz. cosβ.
    cos cos cos
    cos cos cos
    ββφ
    ββφ
    −−
    +−
    F
    H
    GG
    I
    K
    JJ
    22
    22
    ...(Eq. 13.17)
    If σl is defined as Ka. γz as usual,
    Ka = cos
    cos cos cos
    cos cos cos
    β
    ββφ
    ββφ
    −−
    +−
    F
    H
    GG
    I
    K
    JJ
    22
    22 ...(Eq. 13.18)
    Ka is the ‘Rankine’s Coefficient, of active earth pressure for the case inclined surcharge—
    sloping backfill.
    The distribution of pressure with the height of the wall is linear, the pressure distribu-
    tion diagram being triangular as shown in Fig. 13.12 (c). The total active thrust Pa per unit
    length of the wall acts at (1/3)H above the base of the wall and is equal to^12 Kaγ.H^2 ; it acts
    parallel to the surface of the fill.



Free download pdf