DHARM
464 GEOTECHNICAL ENGINEERING
()/
()/
σσ
σσ
13
13
2
2
−
+
= sin φ
or (σ 1 – σ 3 ) = (σ 1 + σ 3 ) sin φ ...(Eq. 13.13)
OG = OC. cosβ = [(σ 1 + σ 3 )/2] cos β
CG = OC. sin β = [(σ 1 + σ 3 )/2] sin β
FG = GE = CF^22 CG 132 13
2
2
2
−= − −RS +
T
U
V
W
{(σσ) / } ()σσsinβ
= [(σ 1 + σ 3 )/2] sin^22 φβ−sin , using Eq. 13.13.
Now, σv = OG + GE =
()
cos
()
sin sin
σσ
β
σσ
(^131322) φβ
22
−
σv =
()
(cos sin sin )
σσ
(^13) βφβ^22
2
+−
or σv =
()
(cos cos cos )
σσ
(^13) ββφ 22
2
+− ...(Eq. 13.14)
σl = OG – FG =
σσ
β
σσ
(^131322) φβ
22
F +
HG
I
KJ
−
F +
HG
I
KJ
cos sin −sin
σl =
σσ
(^13) βφβ 22
2
F +
HG
I
KJ
(cos −−sin sin )
or σl =
σσ
(^13) ββφ 22
2
F +
HG
I
KJ
(cos −−cos cos ) ...(Eq. 13.15)
σ
σ
l
v
= K =
cos cos cos
cos cos cos
ββφ
ββφ
−−
+−
22
22 ...(Eq. 13.16)
K is known as the ‘Conjugate ratio’.
Using Eq. 13.12,
σl = γz. cosβ.
cos cos cos
cos cos cos
ββφ
ββφ
−−
+−
F
H
GG
I
K
JJ
22
22
...(Eq. 13.17)
If σl is defined as Ka. γz as usual,
Ka = cos
cos cos cos
cos cos cos
β
ββφ
ββφ
−−
+−
F
H
GG
I
K
JJ
22
22 ...(Eq. 13.18)
Ka is the ‘Rankine’s Coefficient, of active earth pressure for the case inclined surcharge—
sloping backfill.
The distribution of pressure with the height of the wall is linear, the pressure distribu-
tion diagram being triangular as shown in Fig. 13.12 (c). The total active thrust Pa per unit
length of the wall acts at (1/3)H above the base of the wall and is equal to^12 Kaγ.H^2 ; it acts
parallel to the surface of the fill.