DHARM
LATERAL EARTH PRESSURE AND STABILITY OF RETAINING WALLS 479
B b
W
Sliding wedge
D
R
N
f
S
(+)qf
H
Ppyyd(= + )
W
(180° –yqf– – )
(+)qf
H/3
Pp
+d
y
a
A
(a) Sliding wedge (b) Force triangle
C
Fig. 13.24 Passive earth pressure of cohesionless soil—Coulomb’s theory
∴ Pp = W.
sin( )
sin( )
θφ
ψθφ
+
180 °− − −
Substituting for W,
Pp =
1
2 180
2
.sin 2 .sin( ).
sin( )
sin( )
. sin( )
sin( )
γ
α
θα
αβ
θβ
θα
ψθφ
H
+
+
−
+
°− − −
...(Eq. 13.38)
The minimum value of Pp is obtained by differentiating Eq. 13.38 with respect to θ
equating
∂
∂θ
Pp
to zero, and substituting the corresponding value of θ.
The value of Pp so obtained may be written as
Pp =
1
2
γHK^2
. p
where Kp =
sin ( )
sin .sin( )
sin( ).sin( )
sin( ).sin( )
2
2
2
1
αφ
ααδ
θδ φβ
αδ αβ
−
+−
++
++
L
N
M
M
O
Q
P
P
...(Eq. 13.39)
KP being the coefficient of passive earth resistance.
For a vertical wall retaining a horizontal backfill and for which the friction is equal to φ,
α = 90°, β = 0°, and δ = φ, and Kp reduces to
Kp =
cos
cos sin cos .sin
cos
2
2
1 2
φ
φ
φφ φ
φ
−
L
N
M
M
O
Q
P
P
or Kp =
cos
(sin)
φ
12 − φ^2
...(Eq. 13.40)