442 INFLATION AND PRICECHANGE
The mathematical relationship between the inflation, real and market interest rates is given
as:
i=i'+J+(i')(J) (14-1)
S1,1pposeTiger WqodSWaIltSltoinvest soWerecent golf winniIJ.gsin his hometown bank for one
year. Currently, th.e bank is paying a rate of 55% compounded annually.Assume inflation is
anticipateq to be 2% per year or 8%,per year for the year of Tiger's investment. In each case
identifyi, J,andi'.
SOLUTION,
If Inflation.Is 2 % per Year
F:t;ptnthe precedingdefinitions the inteJ;'estratethat the bankis paying is themarket rate (i).The
inflation rate (f) is given in the problem statement. What is left, then, is to find thereal interesi
rate (i').
i=5.5% f 2% i'=?
"
Sqlving fori'in Equation 14-1, weh.ave
"
II ii' + J+(i')(J)
i~ Ji + (l')(f)
i,--,.J. ,i'(1 +J)
i' (i---/)/(1 +J)
-- (O.05~'-i0.02)/(1+ 0.02)
-tI
II
ia -- ...- ,.--, !!Ii
.
II
.
1
'ffiismeans that Tiger Woods wi11Ji!lye3.4% lIlorepurchasingpowerwitb. tl,ledollaJ,"sinve$ted 1
iniltb.ataccQuntthan b,ehad ayear ago.At tl,leend of the year hy cWlPUfchas.e3.4%D:}oJ;'egoods ·
aq,dserviges than he could have atth.~beginmng oftheyear. A$~Il eXCll1lpleofthegroWth of his
I
tnQney,assUmehe was purchasiIlg golf balls that cost .$5eachalld tU!wheh.adillve$1:ed$loQOi'P
h;sh.ometown bank accoUnt.
~'~Mthebeginningoftheyearh~could pUl"Ch~se:!
~-"- = 1;1-':;;a;-"~ -;0;:. -, !='iif.Dollars today;,availabJe t~b~ halls J
}(Umbe~o1~m.purqfi~t~y ::::5::::::jc~~~-- __m 1
J:
.'Q.034or 3.4% per ye~
- ---~-- - -- -<-------..---.- ..--