Mathematical Modeling in Finance with Stochastic Processes

(Ben Green) #1

6.3. PROPERTIES OF GEOMETRIC BROWNIAN MOTION 209


Figure 6.1: The p.d.f. for a lognormal random variable

Now differentiating with respect tox, we obtain that


fX(x) =

1



2 πσx


t

exp((− 1 /2)[(ln(x)−ln(z 0 )−μt)/(σ


t)]^2 ).

Calculation of the Mean


We can calculate the mean of Geometric Brownian Motion by using the m.g.f.
for the normal distribution.


Theorem 4 .E[z 0 exp(μt+σW(t))] =z 0 exp(μt+ (1/2)σ^2 t)


Proof.


E[X(t)] =E[z 0 exp(μt+σW(t))]
=z 0 exp(μt)E[exp(σW(t))]
=z 0 exp(μt)E[exp(σW(t)u)]|u=1
=z 0 exp(μt) exp(σ^2 tu^2 /2)|u=1
=z 0 exp(μt+ (1/2)σ^2 t)

sinceσW(t)∼N(0,σ^2 t) andE[exp(Y u)] = exp(σ^2 tu^2 /2) whenY∼N(0,σ^2 t).
See Moment Generating Functions, Theorem 4.

Free download pdf