Mathematical Modeling in Finance with Stochastic Processes

(Ben Green) #1

7.6. SENSITIVITY, HEDGING AND THE “GREEKS” 259


Delta


TheDeltaof a European call option is the rate of change of its value with
respect to the underlying security price:


∆ =


∂VC


∂S


= Φ(d 1 ) +SΦ′(d 1 )

∂d 1
∂S
−Kexp(−r(T−t))Φ′(d 2 )

∂d 2
∂S
= Φ(d 1 ) +S

1



2 π

exp(−d^21 /2)

1




T−t

−Kexp(−r(T−t))

1



2 π

exp(−d^22 /2)

1




T−t

= Φ(d 1 ) +S

1



2 π

exp(−d^21 /2)

1




T−t

−Kexp(−r(T−t))

1



2 π

exp

(



(


d 1 −σ


T−t

) 2


/ 2


)


1




T−t

= Φ(d 1 ) +

exp(−d^21 /2)

2 πσ


T−t

×


[


1 −


Kexp(−r(T−t))
S

exp

(


d 1 σ


T−t−σ^2 (T−t)/ 2

)]


= Φ(d 1 ) +

exp(−d^21 /2)

2 πσ


T−t

×


[


1 −


Kexp(−r(T−t))
S

exp

(


log(S/K) + (r+σ^2 /2)(T−t)−σ^2 (T−t)/ 2

)


]


= Φ(d 1 ) +

exp(−d^21 /2)

2 πσ


T−t

×


[


1 −


Kexp(−r(T−t))
S

exp (log(S/K) +r(T−t))

]


= Φ(d 1 )

Note that since 0<Φ(d 1 )<1 (for all reasonable values ofd 1 ), ∆>0, and
so the value of a European call option is always increasing as the underlying
security value increases. This is precisely as we intuitively predicted when

Free download pdf