The History of Mathematical Proof in Ancient Traditions

(Elle) #1

570 tian miao


valuable suggestions. I am especially in debt to Karine Chemla and
Catherine Jami. As we were discussing and working together frequently
during the year, it is not easy to identify all the inspirations I have gained
from them. Th erefore, here, I would like to take this chance to express my
gratitude to them.

Appendix


Th e content of the Detailed Outline of Mathematical Procedures for the
Right-Angled Triangle
Problem a G i v e n F i n d O t h e r


  • 1 a , b c

  • 2 a , c b

  • 3 b , c a
     4 a , b + a b , c Problem 1^ b^
     5 a , b − a b , c Problem 1
     6 a , c + a b , c Problem 2
     7 a , c − a b , c Problem 2

  • 8 a , c + b b , c

  • 9 a , c − b b , c
     10 b , b + a a , c Problem 1
     11 b , b − a a , c Problem 1
    •12 b , c + a a , c
    •13 b , c − a a , c
     14 b , c + b a , c Problem 3
     15 b , c − b a , c Problem 3
    •16 c , a + b a , b
    •17 c , b − a a , b
     18 c , c + a a , b Problem 2
     19 c , c − a a , b Problem 2
     20 c , b + c a , b Problem 3
     21 c , c − b a , b Problem 3
     22 a + b , b − a a , b , c Problem 1
    •23 a + b , a + c a , b , c
    •24 a + b , c − a a , b , c
     25 a + b , c + b a , b , c Problem 24
     26 a + b , c − b a , b , c Problem 23
    •27 b − a , a + c a , b , c
    •28 b − a , c − a a , b , c
     29 b − a , b + c a , b , c Problem 27
     30 b − a , c − b a , b , c Problem 28
    Continued

Free download pdf