The History of Mathematical Proof in Ancient Traditions

(Elle) #1

Index 591


Raeder, J., 161
Ragep, J., 292, 293
Raina, D., 6–8, 9, 12, 228, 230, 238, 245, 247,
258
Raj, K., 237, 258
Rashed, R., 43, 67, 87, 132, 330
Rav, Y., 15, 17, 67
re-interpretation, 500
recension, 89, 109–10, 120
al-Maghribî (Muhyî al-Dîn al-Maghribî)
recension, 120
the so-called Pseudo-Tûsî recension, 89, 106,
109–10, 117, 120, 288
reciprocals, 44–7; see also algorithm
Records of [things] left behind for posterity , see Ji
yi; see also Shu shu ji yi
Records of the procedures of numbering left
behind for posterity , see Shu shu ji yi
Record of What Ý Trai [=Nguyễn Hữu Th ận]
Got Right in Computational Methods
(A) , see Ý Trai toán pháp nhất đắc lục
redrawing, see diagram
regular number, see number
Renaissance, 27, 291
Renan, E., 292
restoring fu , 437, 447, 453–8, 460, 473–4,
481–3
results, 5, 28, 40–3, 44–7, 50, 59, 427, 429, 431,
432–40, 444, 446, 448, 455, 460, 465–6,
479
emphasis on, 277
reverse algorithm, 384, 397, 404, 415
revival of past practices of proof, 56
in China, 56–9
rewriting of lists of operations, 44, 49, 52,
438–52; see also transformations
Reynolds, L. G., 70, 71, 72, 134
Rhind Papyrus, 285, 289
Ricci, M., 2–3, 56, 67, 567
Richomme, M., 523
right-angled triangle, 8, 56–8, 265, 268, 270,
491–2, 494, 497–8, 507
rigour, 4, 6, 12, 14, 15, 290
as a burden, verging on rigidity, 7
lack of, 6, 7, 290
of the Greek geometry, 12, 14, 277
Rites of the Kai-Yuan era , see Kai-Yuan li
Robert of Chester, 86, 117, 127, 130
Robson, E., 384–6, 389, 396, 404–5, 410–11,
417, 509
Rocher, R., 237, 258
romanticism, 280, 291
Rome, A., 139, 162


Rommevaux, S., 78, 81, 84, 89, 118, 119, 120,
134
Ross, W. D., 325
Rota, G.-C., 17, 67
Rotours, R. des, 513, 515, 518, 520–1, 535
Rsine, 494–8
rule, 5, 6–7, 46, 265, 267–8, 270–1, 274, 278,
280, 281, 283, 285, 286, 288, 489–90,
498–9, 501, 503–7
as opposed to proof, 5, 9
general, 402–3
rule of fi ve, 504–5
rule of three, 490–1, 493–8, 500–3, 505, 508
in Chinese, ‘procedure of suppose’ ( jinyou
shu ), 451, 468, 472, 474–5, 479
trigonometrical, 233
Russell, B., 225
Rutten, M., 370–1
Sabra, A. I., 120, 132, 134
Sachs, A. J., 45, 384–6, 388, 391–3, 399, 404–5,
410, 416–17
Said, E. W., 228, 258
Saito, K., 23–5, 30–2, 52, 67, 138, 141–2, 144,
146, 148, 150, 152–5, 158
San deng , 518; see also San deng shu
San deng shu , 515, 517–18, 520–2, 546
Sanskrit, 6, 7, 51, 56, 260–1, 264–5, 269, 272,
487, 491, 501, 506–8
texts, 6–8, 24, 42, 51–2, 63, 260–1, 264–5, 269,
272, 487, 507–8
Sarma, S. R., 490, 508
Sato, T., 198
schemes, see shi
scholium, 86, 95, 97–8, 103
Schreiner, A., 523
Schulz, O., 323
Schuster, J. A., 4, 8, 67
science, 10, 11, 13, 265–7, 269, 508
free inquiry versus lack of science, 8
idea of the unity of science, 11
sciences of India, 228, 265, 508
value of science in the eyes of the public,
2–4, 11
publications devoted to the ‘scientifi c
m e t h o d ’, 1 1
values attached to science, 8, 265–6
scientifi c management, 381; see also taylorism
scientifi c writing, 274
obstacle to logical proofs, 281
obstacle to the formulation of theorems, 281
Scriba, C.J., 5, 65, 279, 293
scribal practice, 327, 329, 331, 333, 339–40
Free download pdf