The Cognitive Neuroscience of Music

(Brent) #1

may provide a sufficient mechanism for the processing of spectrotemporal features of indi-
vidual sounds. Subsequent processing of higher-order temporal patterns formed by those
individual sounds depends on processing in bilateral temperofrontal networks. These net-
works provide a first stage in the neural processing of music. Outstanding issues relate to
the relationship between the elements of these networks and the perceptual attributes of
the stimulus, the type of subject, and the type of task, to name but three.


References


1.Hartmann, W. M.(1997) Signals, Sound, and Sensation. New York: American Institute of Physics
Press.
2.Griffiths, T. D., C. Buechel, R. S. J. Frackowiak,et al. (1998) Analysis of temporal structure in
sound by the human brain.Nat. Neurosci.1,421–7.
3.Peretz, I.(1990) Processing of local and global musical information by unilateral brain-damaged
patients.Brain113, 1185–205.
4.Liegeois-Chauvel, C., I. Peretz, M. Babai,et al. (1998) Contribution of different cortical areas in
the temporal lobes to music processing.Brain121, 1853–67.
5.Zwicker, E.(1952) Die Grenzen der Horbarkeit der Ampiltudenmodulation und der
Frequenzmodulation eines Tones.Acustica Akust. Beih.3,125–33.
6.Kay, R.(1982) Hearing of modulation in sounds.Physiol. Rev. 62, 894–975.
7.Moore, B. C. J.and A. Sek(1995) Effects of carrier frequency, modulation rate, and modulation
waveform on the detection of modulation and the discrimination of modulation type (ampli-
tude modulation versus frequency modulation).J. Acoust. Soc. Am. 97, 2468–78.
8.Wojczak, M.and N. F. Viemeister(1999) Adaptation Produced by Amplitude Modulation. Abstr. 59.
St. Petersburg, FL: Association for Research in Otolaryngology.
9.Rees, A., G. G. R. Green, and R. H. Kay(1986) Steady-state evoked responses to sinusoidally
amplitude-modulated sounds recorded in man.Hear. Res. 23, 123–33.
10.Stefanatos, G. A., G. G. R. Green, and G. G. Ratcliff(1989) Neurophysiological evidence of
auditory channel anomalies in developmental dysphasia.Arch. Neurol. 46, 871–5.
11.Harms,M.P.,J.R.Melcher, and R. Weisskoff(1998) Time courses of fMRI signals in the inferior
colliculus, medial geniculate body, and auditory cortex show different dependencies on noise
burst rate [abstract].Neuroimage7, S365.
12.Giraud, A. L., C. Lorenzi, J. Wable,et al. (1999) Temporal envelope representation in the human
auditory cortex [abstract].Neuroimage9, S787.
13.Moller, A. R.(1974) Response of units in the cochlear nucleus to sinusoidally amplitude modu-
lated tones.Exp. Neurol. 45, 104–17.
14.Rees, A.and A. R. Moller(1983) Responses of neurons in the inferior colliculus of the rat to
AM and FM tones.Hear. Res. 10, 301–30.
15.Langner, G.and C. E. Schreiner(1988) Periodicity coding in the inferior colliculus of the cat.
I. Neuronal mechanisms.J. Neurophysiol. 60, 1799–822.
16.Quine, D. B., D. Regan, K. I. Beverly,et al. (1984) Patients with multiple sclerosis experience
hearing loss for shifts of tone frequency.Arch. Neurol. 41, 506–7.
17.Yan, W.and N. Suga(1998) Corticofugal modulation of the midbrain frequency map in the bat
auditory system.Nat. Neurosci.1,54–85.


176     

Free download pdf