Science - USA (2022-01-07)

(Antfer) #1
30 , 2678–2683 (2012). doi:10.1200/JCO.2011.37.8539;
pmid: 22711850


  1. P. Savaset al., Single-cell profiling of breast cancer T cells
    reveals a tissue-resident memory subset associated
    with improved prognosis.Nat. Med. 24 , 986–993 (2018).
    doi:10.1038/s41591-018-0078-7; pmid: 29942092

  2. L. Kerenet al., A structured tumor-immune
    microenvironment in triple negative breast cancer revealed
    by multiplexed ion beam imaging.Cell 174 , 1373–1387.e19
    (2018). doi:10.1016/j.cell.2018.08.039; pmid: 30193111

  3. M. C. Dieu-Nosjeanet al., Tertiary lymphoid structures,
    drivers of the anti-tumor responses in human cancers.
    Immunol. Rev. 271 , 260–275 (2016). doi:10.1111/imr.12405;
    pmid: 27088920

  4. C. Sautès-Fridmanet al., Tertiary lymphoid structures in
    cancers: Prognostic value, regulation, and manipulation for
    therapeutic intervention.Front. Immunol. 7 , 407 (2016).
    doi:10.3389/fimmu.2016.00407; pmid: 27752258

  5. B. A. Helminket al., B cells and tertiary lymphoid structures
    promote immunotherapy response.Nature 577 , 549– 555
    (2020). doi:10.1038/s41586-019-1922-8; pmid: 31942075

  6. R. Cabritaet al., Tertiary lymphoid structures improve
    immunotherapy and survival in melanoma.Nature
    577 , 561–565 (2020). doi:10.1038/s41586-019-1914-8;
    pmid: 31942071

  7. F. Petitprezet al., B cells are associated with survival and
    immunotherapy response in sarcoma.Nature 577 , 556– 560
    (2020). doi:10.1038/s41586-019-1906-8; pmid: 31942077

  8. A. Manzo, M. Bombardieri, F. Humby, C. Pitzalis, Secondary
    and ectopic lymphoid tissue responses in rheumatoid
    arthritis: From inflammation to autoimmunity and tissue
    damage/remodeling.Immunol. Rev. 233 , 267–285 (2010).
    doi:10.1111/j.0105-2896.2009.00861.x; pmid: 20193005

  9. O. Thaunatet al., Chronic rejection triggers the development
    of an aggressive intragraft immune response through
    recapitulation of lymphoid organogenesis.J. Immunol.
    185 , 717–728 (2010). doi:10.4049/jimmunol.0903589;
    pmid: 20525884

  10. K. Neyt, F. Perros, C. H. GeurtsvanKessel, H. Hammad,
    B. N. Lambrecht, Tertiary lymphoid organs in infection and
    autoimmunity.Trends Immunol. 33 , 297–305 (2012).
    doi:10.1016/j.it.2012.04.006; pmid: 22622061

  11. E. J. Colbeck, A. Ager, A. Gallimore, G. W. Jones, Tertiary
    lymphoid structures in cancer: Drivers of antitumor
    immunity, immunosuppression, or bystander sentinels in
    disease?Front. Immunol. 8 , 1830 (2017). doi:10.3389/
    fimmu.2017.01830; pmid: 29312327

  12. M. C. Dieu-Nosjeanet al., Long-term survival for patients with
    non-small-cell lung cancer with intratumoral lymphoid
    structures.J. Clin. Oncol. 26 , 4410–4417 (2008).
    doi:10.1200/JCO.2007.15.0284; pmid: 18802153

  13. L. de Chaisemartinet al., Characterization of chemokines and
    adhesion molecules associated with T cell presence in
    tertiary lymphoid structures in human lung cancer.
    Cancer Res. 71 , 6391–6399 (2011). doi:10.1158/
    0008-5472.CAN-11-0952; pmid: 21900403

  14. J. Gocet al., Dendritic cells in tumor-associated tertiary
    lymphoid structures signal a Th1 cytotoxic immune
    contexture and license the positive prognostic value of
    infiltrating CD8+T cells.Cancer Res. 74 , 705–715 (2014).
    doi:10.1158/0008-5472.CAN-13-1342; pmid: 24366885

  15. F. Bergomaset al., Tertiary intratumor lymphoid tissue in
    colo-rectal cancer.Cancers 4 ,1–10 (2011). doi:10.3390/
    cancers4010001; pmid: 24213222

  16. D. Coppolaet al., Unique ectopic lymph node-like structures
    present in human primary colorectal carcinoma are identified
    by immune gene array profiling.Am. J. Pathol. 179 , 37– 45
    (2011). doi:10.1016/j.ajpath.2011.03.007; pmid: 21703392

  17. C. Sautès-Fridman, F. Petitprez, J. Calderaro, W. H. Fridman,
    Tertiary lymphoid structures in the era of cancer
    immunotherapy.Nat. Rev. Cancer 19 , 307–325 (2019).
    doi:10.1038/s41568-019-0144-6; pmid: 31092904

  18. C. Gu-Trantienet al., CD4+follicular helper T cell infiltration
    predicts breast cancer survival.J. Clin. Invest. 123 ,
    2873 – 2892 (2013). doi:10.1172/JCI67428; pmid: 23778140

  19. D. R. Kroeger, K. Milne, B. H. Nelson, Tumor-infiltrating
    plasma cells are associated with tertiary lymphoid structures,
    cytolytic T-cell responses, and superior prognosis in ovarian
    cancer.Clin. Cancer Res. 22 , 3005–3015 (2016).
    doi:10.1158/1078-0432.CCR-15-2762; pmid: 26763251

  20. A. Hennequinet al., Tumor infiltration by Tbet+ effector
    T cells and CD20+ B cells is associated with survival in
    gastric cancer patients.OncoImmunology 5 , e1054598


(2015). doi:10.1080/2162402X.2015.1054598;
pmid: 27057426


  1. G. Di Caroet al., Occurrence of tertiary lymphoid tissue is
    associated with T-cell infiltration and predicts better prognosis
    in early-stage colorectal cancers.Clin. Cancer Res. 20 ,
    2147 – 2158 (2014). doi:10.1158/1078-0432.CCR-13-2590;
    pmid: 24523438

  2. T. P. McMullen, R. Lai, L. Dabbagh, T. M. Wallace,
    C. J. de Gara, Survival in rectal cancer is predicted by
    T cell infiltration of tumour-associated lymphoid nodules.
    Clin. Exp. Immunol. 161 , 81–88 (2010). doi:10.1111/
    j.1365-2249.2010.04147.x; pmid: 20408858

  3. M. Baratinet al., T cell zone resident macrophages silently
    dispose of apoptotic cells in the lymph node.Immunity
    47 , 349–362.e5 (2017). doi:10.1016/j.immuni.2017.07.019;
    pmid: 28801233

  4. F. Baroneet al., Stromal fibroblasts in tertiary lymphoid
    structures: A novel target in chronic inflammation.
    Front. Immunol. 7 , 477 (2016). doi:10.3389/
    fimmu.2016.00477; pmid: 27877173

  5. C. S. Jansenet al., An intra-tumoral niche maintains
    and differentiates stem-like CD8 T cells.Nature 576 ,
    465 – 470 (2019). doi:10.1038/s41586-019-1836-5;
    pmid: 31827286

  6. I. Siddiquiet al., Intratumoral Tcf1+PD-1+CD8+T cells with
    stem-like properties promote tumor control in response to
    vaccination and checkpoint blockade immunotherapy.
    Immunity 50 , 195–211.e10 (2019). doi:10.1016/
    j.immuni.2018.12.021; pmid: 30635237

  7. S. Kurtuluset al., Checkpoint blockade immunotherapy
    induces dynamic changes in PD-1−CD8+tumor-infiltrating
    T cells.Immunity 50 , 181–194.e6 (2019). doi:10.1016/
    j.immuni.2018.11.014; pmid: 30635236

  8. B. C. Milleret al., Subsets of exhausted CD8+T cells
    differentially mediate tumor control and respond to
    checkpoint blockade.Nat. Immunol. 20 , 326–336 (2019).
    doi:10.1038/s41590-019-0312-6; pmid: 30778252

  9. T. D. Randall, D. M. Carragher, J. Rangel-Moreno,
    Development of secondary lymphoid organs.
    Annu. Rev. Immunol. 26 , 627–650 (2008). doi:10.1146/
    annurev.immunol.26.021607.090257; pmid: 18370924

  10. S. A. van de Pavert, R. E. Mebius, New insights into the
    development of lymphoid tissues.Nat. Rev. Immunol.
    10 , 664–674 (2010). doi:10.1038/nri2832; pmid: 20706277

  11. T. Cupedo, G. Kraal, R. E. Mebius, The role of CD45+CD4+CD3−
    cells in lymphoid organ development.Immunol. Rev. 189 ,
    41 – 50 (2002). doi:10.1034/j.1600-065X.2002.18905.x;
    pmid: 12445264

  12. R. E. Mebius, Organogenesis of lymphoid tissues.
    Nat. Rev. Immunol. 3 , 292–303 (2003). doi:10.1038/nri1054;
    pmid: 12669020

  13. S. Nishikawa, K. Honda, P. Vieira, H. Yoshida, Organogenesis
    of peripheral lymphoid organs.Immunol. Rev. 195 ,
    72 – 80 (2003). doi:10.1034/j.1600-065X.2003.00063.x;
    pmid: 12969311

  14. T. Cupedo, R. E. Mebius, Role of chemokines in the
    development of secondary and tertiary lymphoid tissues.
    Semin. Immunol. 15 , 243–248 (2003). doi:10.1016/
    j.smim.2003.08.002; pmid: 15001173

  15. D. L. Drayton, S. Liao, R. H. Mounzer, N. H. Ruddle, Lymphoid
    organ development: From ontogeny to neogenesis.
    Nat. Immunol. 7 , 344–353 (2006). doi:10.1038/ni1330;
    pmid: 16550197

  16. Y. Okabe, R. Medzhitov, Tissue-specific signals control
    reversible program of localization and functional polarization
    of macrophages.Cell 157 , 832–844 (2014). doi:10.1016/
    j.cell.2014.04.016; pmid: 24792964

  17. S. A. Luther, K. M. Ansel, J. G. Cyster, Overlapping roles of
    CXCL13, interleukin 7 receptora, and CCR7 ligands in lymph
    node development.J. Exp. Med. 197 , 1191–1198 (2003).
    doi:10.1084/jem.20021294; pmid: 12732660

  18. H. Yoshidaet al., Different cytokines induce surface
    lymphotoxin-abon IL-7 receptor-acells that differentially
    engender lymph nodes and Peyer’s patches.Immunity 17 ,
    823 – 833 (2002). doi:10.1016/S1074-7613(02)00479-X;
    pmid: 12479827

  19. H. Fleigeet al., IL-17-induced CXCL12 recruits B cells and
    induces follicle formation in BALT in the absence of
    differentiated FDCs.J. Exp. Med. 211 , 643–651 (2014).
    doi:10.1084/jem.20131737; pmid: 24663215

  20. S. A. Lutheret al., Differing activities of homeostatic
    chemokines CCL19, CCL21, and CXCL12 in lymphocyte and
    dendritic cell recruitment and lymphoid neogenesis.


J. Immunol. 169 , 424–433 (2002). doi:10.4049/
jimmunol.169.1.424; pmid: 12077273


  1. S. A. Luther, T. Lopez, W. Bai, D. Hanahan, J. G. Cyster, BLC
    expression in pancreatic islets causes B cell recruitment
    and lymphotoxin-dependent lymphoid neogenesis.Immunity
    12 , 471–481 (2000). doi:10.1016/S1074-7613(00)80199-5;
    pmid: 10843380

  2. N. H. Ruddle, Lymphatic vessels and tertiary lymphoid
    organs.J. Clin. Invest. 124 , 953–959 (2014). doi:10.1172/
    JCI71611; pmid: 24590281

  3. C. Gago da Graça, L. G. M. van Baarsen, R. E. Mebius,
    Tertiary lymphoid structures: Diversity in their development,
    composition, and role.J. Immunol. 206 , 273–281 (2021).
    doi:10.4049/jimmunol.2000873; pmid: 33397741

  4. C. Deteixet al., Intragraft Th17 infiltrate promotes lymphoid
    neogenesis and hastens clinical chronic rejection.J. Immunol.
    184 , 5344–5351 (2010). doi:10.4049/jimmunol.0902999;
    pmid: 20357253

  5. A. Peterset al., Th17 cells induce ectopic lymphoid follicles in
    central nervous system tissue inflammation.Immunity
    35 , 986–996 (2011). doi:10.1016/j.immuni.2011.10.015;
    pmid: 22177922

  6. P. Carregaet al., NCR+ILC3 concentrate in human lung
    cancer and associate with intratumoral lymphoid structures.
    Nat. Commun. 6 , 8280 (2015). doi:10.1038/ncomms9280;
    pmid: 26395069

  7. J. D. Peskeet al., Effector lymphocyte-induced lymph
    node-like vasculature enables naive T-cell entry into tumours
    and enhanced anti-tumour immunity.Nat. Commun. 6 ,
    7114 (2015). doi:10.1038/ncomms8114; pmid: 25968334

  8. A. B. Rodriguezet al., Immune mechanisms orchestrate
    tertiary lymphoid structures in tumors via cancer-associated
    fibroblasts.Cell Rep. 36 , 109422 (2021). doi:10.1016/
    j.celrep.2021.109422; pmid: 34289373

  9. M. Lochneret al., Microbiota-induced tertiary lymphoid
    tissues aggravate inflammatory disease in the absence of
    RORgt and LTi cells.J. Exp. Med. 208 , 125–134 (2011).
    doi:10.1084/jem.20100052; pmid: 21173107

  10. K. Guedjet al., M1 macrophages act as LTbR-independent
    lymphoid tissue inducer cells during atherosclerosis-related
    lymphoid neogenesis.Cardiovasc. Res. 101 , 434–443 (2014).
    doi:10.1093/cvr/cvt263; pmid: 24272771

  11. T. D. Randall, Bronchus-associated lymphoid tissue (BALT)
    structure and function.Adv. Immunol. 107 , 187–241 (2010).
    doi:10.1016/B978-0-12-381300-8.00007-1; pmid: 21034975

  12. J. Rangel-Morenoet al., The development of inducible
    bronchus-associated lymphoid tissue depends on IL-17.
    Nat. Immunol. 12 , 639–646 (2011). doi:10.1038/ni.2053;
    pmid: 21666689

  13. K. Guedjet al., Adipocytes orchestrate the formation
    of tertiary lymphoid organs in the creeping fat of Crohn’s
    disease affected mesentery.J. Autoimmun. 103 , 102281
    (2019). doi:10.1016/j.jaut.2019.05.009; pmid: 31171476

  14. K. Guedjet al., Inflammatory micro-environmental cues of
    human atherothrombotic arteries confer to vascular smooth
    muscle cells the capacity to trigger lymphoid neogenesis.
    PLOS ONE 9 , e116295 (2014). doi:10.1371/
    journal.pone.0116295; pmid: 25548922

  15. D. S. Thommenet al., A transcriptionally and functionally distinct
    PD-1+CD8+T cell pool with predictive potential in non-small-cell
    lung cancer treated with PD-1 blockade.Nat. Med. 24 , 994– 1004
    (2018). doi:10.1038/s41591-018-0057-z; pmid: 29892065

  16. M. Yanget al., CXCL13 shapes immunoactive tumor
    microenvironment and enhances the efficacy of PD-1
    checkpoint blockade in high-grade serous ovarian cancer.
    J. Immunother. Cancer 9 , e001136 (2021). doi:10.1136/
    jitc-2020-001136; pmid: 33452206

  17. S. Z. Wuet al., Stromal cell diversity associated with immune
    evasion in human triple-negative breast cancer.EMBO J.
    39 , e104063 (2020). doi:10.15252/embj.2019104063;
    pmid: 32790115

  18. A. Ager, High endothelial venules and other blood vessels:
    Critical regulators of lymphoid organ development and
    function.Front. Immunol. 8 , 45 (2017). doi:10.3389/
    fimmu.2017.00045; pmid: 28217126

  19. G. C. Furtadoet al., TNFa-dependent development of
    lymphoid tissue in the absence of RORgt+lymphoid tissue
    inducer cells.Mucosal Immunol. 7 , 602–614 (2014).
    doi:10.1038/mi.2013.79; pmid: 24129162

  20. M. C. Dieu-Nosjean, J. Goc, N. A. Giraldo, C. Sautès-Fridman,
    W. H. Fridman, Tertiary lymphoid structures in cancer and
    beyond.Trends Immunol. 35 , 571–580 (2014). doi:10.1016/
    j.it.2014.09.006; pmid: 25443495


Schumacher and Thommen,Science 375 , eabf9419 (2022) 7 January 2022 8 of 10


RESEARCH | REVIEW

Free download pdf