Science - USA (2022-01-07)

(Antfer) #1

DMEM:F12 medium and stored in the incu-
bator. Intestinal organoids were cultured in
Matrigel following previously published pro-
tocols ( 37 ). For cell loading in the microwells,
concentrated suspension of dissociated in-
testinal stem cells was pipetted on top of the
hydrogel surface. Cells were allowed to sedi-
ment within the microcavities of the gels for
5 to 7 min, and nonadherent cells were gently
washed with medium. Partially gelled collagen
“lid”was placed on top of the cell arrays and
the two layers of collagen were allowed to seal
for additional 15 min in the incubator. ISC
expansion medium supplemented with 2.5mM
thiazovivin was added. The cells were allowed
to self-organize into lumenized epithelial stem
cell colonies adopting the geometry of the
hydrogel microwells (typically 36 hours). To
induce differentiation, budding, and organ-
oid formation, the medium was replaced with
fresh medium containing EGF, Noggin, and
R-spondin.
Microfabricated crypt arrays and crypt-villi–
shaped epithelium were produced in an iden-
tical manner, but the patterns were not sealed
with a second layer of hydrogel and therefore
cells were permitted to grow both within the
cavities and atop the external surfaces.


REFERENCESANDNOTES



  1. H. Clevers, Modeling Development and Disease with Organoids.
    Cell 165 , 1586–1597 (2016). doi:10.1016/j.cell.2016.05.082;
    pmid: 27315476

  2. J. Drost, H. Clevers, Organoids in cancer research.Nat. Rev.
    Cancer 18 , 407–418 (2018). doi:10.1038/s41568-018-0007-6;
    pmid: 29692415

  3. J. Drostet al., Use of CRISPR-modified human stem cell
    organoids to study the origin of mutational signatures
    in cancer.Science 358 , 234–238 (2017). doi:10.1126/
    science.aao3130; pmid: 28912133

  4. M. A. Lancaster, J. A. Knoblich, Organogenesis in a dish:
    Modeling development and disease using organoid
    technologies.Science 345 , 1247125 (2014). doi:10.1126/
    science.1247125; pmid: 25035496

  5. G. Vlachogianniset al., Patient-derived organoids model
    treatment response of metastatic gastrointestinal cancers.
    Science 359 , 920–926 (2018). doi:10.1126/science.aao2774;
    pmid: 29472484

  6. G. Rossi, A. Manfrin, M. P. Lutolf, Progress and potential in
    organoid research.Nat. Rev. Genet. 19 , 671–687 (2018).
    doi:10.1038/s41576-018-0051-9; pmid: 30228295

  7. Y. Sasai, Cytosystems dynamics in self-organization of tissue
    architecture.Nature 493 , 318–326 (2013). doi:10.1038/
    nature11859; pmid: 23325214

  8. M. Huch, J. A. Knoblich, M. P. Lutolf, A. Martinez-Arias,
    The hope and the hype of organoid research.Development
    144 , 938–941 (2017). doi:10.1242/dev.150201;
    pmid: 28292837

  9. Advances in Organoid Technology: Hans Clevers, Madeline
    Lancaster, and Takanori Takebe [edited interview with Clevers,
    Lancaster, and Takebe].Cell Stem Cell 20 , 759–762 (2017).
    doi:10.1016/j.stem.2017.05.014

  10. Y. Wanget al., A microengineered collagen scaffold for
    generating a polarized crypt-villus architecture of human small
    intestinal epithelium.Biomaterials 128 , 44–55 (2017).
    doi:10.1016/j.biomaterials.2017.03.005; pmid: 28288348

  11. R. Kimet al., Formation of arrays of planar, murine, intestinal
    crypts possessing a stem/proliferative cell compartment
    and differentiated cell zone.Lab Chip 18 , 2202–2213 (2018).
    doi:10.1039/C8LC00332G; pmid: 29944153

  12. Y. Wanget al., Formation of Human Colonic Crypt Array by
    Application of Chemical Gradients Across a Shaped Epithelial
    Monolayer.Cell. Mol. Gastroenterol. Hepatol. 5 , 113–130 (2017).
    doi:10.1016/j.jcmgh.2017.10.007; pmid: 29693040
    13. M. Nikolaevet al., Homeostatic mini-intestines through
    scaffold-guided organoid morphogenesis.Nature 585 ,
    574 – 578 (2020). doi:10.1038/s41586-020-2724-8;
    pmid: 32939089
    14. M. A. Lancasteret al., Guided self-organization and cortical
    plate formation in human brain organoids.Nat. Biotechnol. 35 ,
    659 – 666 (2017). doi:10.1038/nbt.3906; pmid: 28562594
    15. H. M. Polinget al., Mechanically induced development and
    maturation of human intestinal organoids in vivo.Nat. Biomed. Eng.
    2 , 429–442 (2018). doi:10.1038/s41551-018-0243-9;
    pmid: 30151330
    16. M. Zinner, I. Lukonin, P. Liberali, Design principles of tissue
    organisation: How single cells coordinate across scales.
    Curr. Opin. Cell Biol. 67 , 37–45 (2020). doi:10.1016/
    j.ceb.2020.07.004; pmid: 32889170
    17. N. Gjorevskiet al., Designer matrices for intestinal stem cell
    and organoid culture.Nature 539 , 560–564 (2016).
    doi:10.1038/nature20168; pmid: 27851739
    18. T. Satoet al., Single Lgr5 stem cells build crypt-villus
    structures in vitro without a mesenchymal niche.
    Nature 459 , 262–265 (2009). doi:10.1038/nature07935;
    pmid: 19329995
    19. T. Sato, H. Clevers, Growing self-organizing mini-guts from
    a single intestinal stem cell: Mechanism and applications.
    Science 340 , 1190–1194 (2013). doi:10.1126/science.1234852;
    pmid: 23744940
    20. D. D. McKinnon, T. E. Brown, K. A. Kyburz, E. Kiyotake,
    K. S. Anseth, Design and characterization of a synthetically
    accessible, photodegradable hydrogel for user-directed
    formation of neural networks.Biomacromolecules 15 ,
    2808 – 2816 (2014). doi:10.1021/bm500731b; pmid: 24932668
    21. C. M. Nelson, M. M. Vanduijn, J. L. Inman, D. A. Fletcher,
    M. J. Bissell, Tissue geometry determines sites of mammary
    branching morphogenesis in organotypic cultures.Science
    314 , 298–300 (2006). doi:10.1126/science.1131000;
    pmid: 17038622
    22. C. M. Nelson, J. L. Inman, M. J. Bissell, Three-dimensional
    lithographically defined organotypic tissue arrays for
    quantitative analysis of morphogenesis and neoplastic
    progression.Nat. Protoc. 3 , 674–678 (2008). doi:10.1038/
    nprot.2008.35; pmid: 18388950
    23. H. Clevers, The intestinal crypt, a prototype stem cell
    compartment.Cell 154 , 274–284 (2013). doi:10.1016/
    j.cell.2013.07.004; pmid: 23870119
    24. A. Gregorieff, Y. Liu, M. R. Inanlou, Y. Khomchuk, J. L. Wrana,
    Yap-dependent reprogramming of Lgr5+stem cells drives
    intestinal regeneration and cancer.Nature 526 , 715– 718
    (2015). doi:10.1038/nature15382; pmid: 26503053
    25. M. Imajo, M. Ebisuya, E. Nishida, Dual role of YAP and TAZ in
    renewal of the intestinal epithelium.Nat. Cell Biol. 17 ,7– 19
    (2015). doi:10.1038/ncb3084; pmid: 25531778
    26. T. Panciera, L. Azzolin, M. Cordenonsi, S. Piccolo,
    Mechanobiology of YAP and TAZ in physiology and disease.
    Nat. Rev. Mol. Cell Biol. 18 , 758–770 (2017). doi:10.1038/
    nrm.2017.87; pmid: 28951564
    27. S. Yuiet al., YAP/TAZ-Dependent Reprogramming of Colonic
    Epithelium Links ECM Remodeling to Tissue Regeneration.
    Cell Stem Cell 22 , 35–49.e7 (2018). doi:10.1016/
    j.stem.2017.11.001; pmid: 29249464
    28. S. Dupontet al., Role of YAP/TAZ in mechanotransduction.
    Nature 474 , 179–183 (2011). doi:10.1038/nature10137;
    pmid: 21654799
    29. M. Aragonaet al., A mechanical checkpoint controls multicellular
    growth through YAP/TAZ regulation by actin-processing factors.
    Cell 154 , 1047–1059 (2013). doi:10.1016/j.cell.2013.07.042;
    pmid: 23954413
    30. D. Serraet al., Self-organization and symmetry breaking in
    intestinal organoid development.Nature 569 , 66–72 (2019).
    doi:10.1038/s41586-019-1146-y; pmid: 31019299
    31. I. Lukoninet al., Phenotypic landscape of intestinal organoid
    regeneration.Nature 586 , 275–280 (2020). doi:10.1038/
    s41586-020-2776-9; pmid: 33029001
    32. F. Fanet al., Pharmacological targeting of kinases MST1
    and MST2 augments tissue repair and regeneration.
    Sci. Transl. Med. 8 , 352ra108 (2016). doi:10.1126/
    scitranslmed.aaf2304
    33. E. A. Rosado-Olivieri, K. Anderson, J. H. Kenty, D. A. Melton,
    YAP inhibition enhances the differentiation of functional
    stem cell-derived insulin-producingbcells.Nat. Commun.
    10 ,1464(2019).doi:10.1038/s41467-019-09404-6;
    pmid: 30931946
    34. Y. Liu-Chittendenet al., Genetic and pharmacological
    disruption of the TEAD-YAP complex suppresses the oncogenic


activity of YAP.Genes Dev. 26 , 1300–1305 (2012).
doi:10.1101/gad.192856.112; pmid: 22677547


  1. W. R. Legantet al., Measurement of mechanical tractions
    xerted by cells in three-dimensional matrices.Nat. Methods
    7 , 969–971 (2010). doi:10.1038/nmeth.1531;
    pmid: 21076420

  2. H. F. Farinet al., Visualization of a short-range Wnt gradient in
    the intestinal stem-cell niche.Nature 530 , 340–343 (2016).
    doi:10.1038/nature16937; pmid: 26863187

  3. X. Yinet al., Niche-independent high-purity cultures of Lgr5+
    intestinal stem cells and their progeny.Nat. Methods 11 ,
    106 – 112 (2014). doi:10.1038/nmeth.2737; pmid: 24292484

  4. A. E. Shyer, T. R. Huycke, C. Lee, L. Mahadevan, C. J. Tabin,
    Bending gradients: How the intestinal stem cell gets its home.
    Cell 161 , 569–580 (2015). doi:10.1016/j.cell.2015.03.041;
    pmid: 25865482

  5. J. Holmberget al., EphB receptors coordinate migration and
    proliferation in the intestinal stem cell niche.Cell 125 ,
    1151 – 1163 (2006). doi:10.1016/j.cell.2006.04.030;
    pmid: 16777604

  6. M. Genanderet al., Dissociation of EphB2 signaling pathways
    mediating progenitor cell proliferation and tumor suppression.
    Cell 139 , 679–692 (2009). doi:10.1016/j.cell.2009.08.048;
    pmid: 19914164

  7. E. Batlleet al.,b-catenin and TCF mediate cell positioning in
    the intestinal epithelium by controlling the expression of
    EphB/ephrinB.Cell 111 , 251–263 (2002). doi:10.1016/
    S0092-8674(02)01015-2; pmid: 12408869

  8. R. Kiesslichet al., Local barrier dysfunction identified by
    confocal laser endomicroscopy predicts relapse in
    inflammatory bowel disease.Gut 61 , 1146–1153 (2012).
    doi:10.1136/gutjnl-2011-300695; pmid: 22115910

  9. J. J. Liuet al., Mind the gaps: Confocal endomicroscopy
    showed increased density of small bowel epithelial gaps in
    inflammatory bowel disease.J. Clin. Gastroenterol. 45 ,
    240 – 245 (2011). doi:10.1097/MCG.0b013e3181fbdb8a;
    pmid: 21030873

  10. F. Wanget al., Active deformation of apoptotic intestinal
    epithelial cells with adhesion-restricted polarity contributes to
    apoptotic clearance.Lab. Invest. 91 , 462–471 (2011).
    doi:10.1038/labinvest.2010.182; pmid: 21042290

  11. Y. Guanet al., Redistribution of the tight junction protein
    ZO-1 during physiological shedding of mouse intestinal
    epithelial cells.Am. J. Physiol. Cell Physiol. 300 , C1404–C1414
    (2011). doi:10.1152/ajpcell.00270.2010; pmid: 21346149

  12. A. M. Marchiandoet al., The epithelial barrier is maintained
    by in vivo tight junction expansion during pathologic
    intestinal epithelial shedding.Gastroenterology 140 ,
    1208 – 1218.e1 (2011). doi:10.1053/j.gastro.2011.01.004;
    pmid: 21237166

  13. C. M. Nelson, Geometric control of tissue morphogenesis.
    Biochim. Biophys. Acta Mol. Cell Res. 1793 , 903–910 (2009).
    doi:10.1016/j.bbamcr.2008.12.014


ACKNOWLEDGMENTS
We thank F. Radtke and U. Koch for providing intestine from
Hes1-GFP mice and S. Hoehnel for help with establishing intestinal
crypt surfaces.Funding:This work was funded by support from
the Swiss National Science Foundation (SNSF) research grant
310030_179447, the EU Horizon 2020 Project INTENS (#668294-2),
the PHRT - PM/PH Research Project Proposal 2017, Ecole
Polytechnique Fédérale de Lausanne (EPFL), and NIH (R01DK120921).
N.G. was supported in part by an EMBO Long-Term Postdoctoral
Fellowship. T.B. was supported by fellowships from the NSF GRFP
and NIH (T32 GM-065103). F.D. was supported in part by the
Center for Integrated Nanotechnologies, a US Department
of Energy Office of Basic Energy Sciences user facility. Sandia
National Laboratories is a multimission laboratory managed and
operated by National Technology and Engineering Solutions of
Sandia LLC, a wholly owned subsidiary of Honeywell International
Inc., for the US Department of Energy National Nuclear Security
Administration under contract DENA0003525.Author contributions:
N.G. and M.P.L. conceived the study, designed experiments,
analyzed data, and wrote the manuscript. N.G. was involved in
performing and analyzing all experiments in the manuscript except
for those involving macroscopic intestinal surfaces. M.N. designed,
performed, and analyzed experiments with microtissues and
engineered intestinal surfaces and helped in figure preparation.
T.B. designed, performed, and analyzed gel photopatterning
experiments. O.M. designed, performed, and analyzed experiments
with human intestinal microtissues. N.B. developed initial
microfabrication approaches for engineered intestinal surfaces.
F.W.D. performed mechanical characterization of photopatterned

Gjorevskiet al.,Science 375 , eaaw9021 (2022) 7 January 2022 8of9


RESEARCH | RESEARCH ARTICLE

Free download pdf