The Economist - USA (2022-01-15)

(Antfer) #1

68 Science & technology TheEconomistJanuary15th 2022


stretches 1,000km along the coast of North
America, from Vancouver Island in Canada
to  northern  California.  It  is  the  boundary
between  the  Explorer,  Juan  de  Fuca  and
Gorda  plates  to  the  west,  and  the  North
American  plate  to  the  east.  Steady  move­
ment  of  the  latter  plate  over  the  former
three  generates  a  slow­slip  event  every  14
months  or  so,  and  geophysicists  have  re­
corded  this  activity  in  detail  since  the
1990s. That means there are plenty of com­
plete  cycles  of  data—and  the  machine­
learning  system  trained  on  these  by  Dr
Johnson  was  able  to  “hindcast”  past  slow
slips  based  on  the  seismic  signals  which
preceded  them,  “predicting”  when  they
would  happen  to  within  a  week  or  so  of
when they had occurred in reality.
The next test of the technique, yet to be
executed,  will  be  an  actual  forecast  of  a
slow­slip event. But even without this hav­
ing happened, Dr Johnson’s slow­slip pro­
ject  suggests  that  machine­learning  tech­
niques  do  indeed  work  with  seismic
events, and might thus be extended to in­
clude earthquakes if only there were a way
to compensate for the lack of data. To pro­
vide  such  compensation,  he  and  his  col­
leagues are applying a process called trans­
fer  learning.  This  operates  with  a  mixture
of simulated and real­world information.

Getting real
“Lab  quakes”  are  miniature  earthquakes
generated on a laboratory bench by squeez­
ing  glass  beads  slowly  in  a  press,  until
something  suddenly  gives.  This  has
proved  a  useful  surrogate  for  stick­slip
movement.  Dr  Johnson’s  team  have  creat­
ed  a  numerical  simulation  (a  computer
model that captures the essential elements
of  a  physical  system)  of  a  lab  quake  and
trained their machine­learning system on
it, to see if it can learn to predict the course
of the surrogate quakes. 
The result is moderately successful. But
what really makes a difference is boosting
the trained system with extra data from ac­
tual experiments—in other words, transfer
learning.  The  combination  of  simulated
data  fine­tuned  with  a  pinch  of  the  real
thing  is  markedly  more  effective  at  pre­
dicting when a lab quake will occur.
The next step towards earthquake fore­
casting will be to apply the same approach

to a real geological fault, in this case prob­
ably the San Andreas. A machine­learning
system  will  be  trained  on  data  from  a  nu­
merical  simulation  of  the  fault,  plus  the
half­cycle’s worth of live data available. Dr
Johnson’s team will see if this is enough to
hindcast events not included in the train­
ing  data.  He  mentions  the  magnitude­six
Parkfield  earthquake  in  2004—a  slippage
of the San Andreas that did minimal dam­
age,  but  was  extremely  well  studied—as
one possible target. 
At present Dr Johnson’s aspirations are
limited to predicting the timing of an im­
minent quake. A full prediction would also
need  to  include  whereabouts  along  the
fault it was going to happen and its magni­
tude. However, if timing can indeed be pre­
dicted, that will surely stimulate efforts to
forecast these other criteria, as well. 
He  hopes  for  initial  results  in  the  next
three  to  six  months,  but  cautions  that  it
might take longer than that. If those results
are  indeed  promising,  though,  there  will
no doubt be a rush of other teams around
the world attempting to do likewise, using
historical data from other earthquake­pro­
ducing faults in order to validate the tech­
nique.  That,  in  turn,  should  improve  the
underlying model.
If  it  all  comes  to  naught,  nothing  will
have been lost, for Dr Johnson’s work will
certainlyprovidea betterunderstandingof
thephysicsofbigearthquakes,andthatis
valuableinandofitself.But,ifitdoesnot
cometonaught,andinsteadcreatessoft­
ware capable of predicting when big
quakeswillhappen,thatreallywouldbean
earth­shakingdiscovery.n

Climatechange

Unfrozen North


A


quarter of the  northern  hemi­
sphere’s land is covered by permafrost,
defined as ground that remains at or below
0°C  for  at  least  two  years  in  succession.
Most  of  this  is  above  the  Arctic  Circle,  a
part of the world that is warming at a rate
double the global average, with significant
consequences  for  the  rest  of  the  planet.
Arctic  permafrost  is  thought  to  contain
some 1.7trn tonnes of carbon, most of it in
frozen  organic  matter.  That  is  double  the
amount  of  the  stuff  currently  residing  in
the  atmosphere.  Rising  temperatures
mean that much of this material may turn
into  carbon  dioxide  and  methane  as  the
ground thaws and micro­organisms get to
work.  That  will  drive  further  warming,

causing  a  feedback  loop  of  more  melting
and yet more greenhouse­gas emission.
These  risks  are  re­emphasised  in  a  pa­
per just published in Nature Reviews Earth
and Environment. It warns that warming of
the  top  three  metres  of  permafrost  alone
could result in the release of 624m tonnes
of carbon a year by 2100, a figure similar to
the  current  emissions  of  Canada  or  Saudi
Arabia.  But  a  thawing  Arctic  poses  other,
more immediate, problems. Another paper
published  in  the  same  journal  highlights
the threat posed to circumpolar infrastruc­
ture as the ground beneath it thaws.
Thawing  permafrost  is  a  particularly
unpredictable  environment  on  which  to
build.  As  its  ice  content  changes  and  the
volume  of  liquid  water  increases,  the  soil
can  experience  vertical  movements  of  up
to  40cm  a  year  and  its  capacity  to  bear
weight drops dramatically. This can lead to
landslides, to the subsidence of individual
buildings, and to the appearance of cracks
and  deformities  in  long,  linear  structures
such as roads and pipelines.
The  conclusions  drawn  by  lead  author
Jan Hjort, of the University of Oulu, in Fin­
land,  are  stark.  Of  the  120,000  buildings,
40,000km  of  roads  and  9,500km  of  pipe­
lines  currently  built  on  permafrost,  up  to
half are expected to be at high risk by 2060.
By then, he estimates, the bill for mainte­
nance could exceed $35bn dollars a year.
Russia  is  the  country  most  threatened

Arctic infrastructure is threatened by
rising temperatures

Nothing is permanent

Permafrostcoverage, 2050 forecast*
Expectedtoexist Thawedpermafrost

CANADA RUSSIA

Arctic
Circle

Source:NatureReviewsEarthandEnvironment

*UnderRepresentativeConcentrationPathway (RCP) 4.
†Roads,railways,pipelines,ports,airportsand buildings

North Pole

Glacier

CANADA RUSSIA

Alaska
(US)

Alaska
(US)

Arctic
Circle

North Pole

Glacier

Permafrost degradation risk to infrastructure†
2050 forecast* High Medium Low

The Richard Casement internship. We invite
applications for the 2022 Richard Casement
internship. We are looking for a would-be journalist
to spend three months of the summer working on
the newspaper in London (covid-19 permitting;
otherwise remotely), writing about science and
technology. Applicants should compose a letter
introducing themselves and an article of about 600
words that they think would be suitable for
publication in the Science & technology section. The
successful candidate will receive a stipend of £2,000
a month. Applications must reach us by midnight on
January 28th. They should be sent to:
[email protected]
Free download pdf