escape lysosomal sequestration and may be ef-
ficacious against resistant cancer types such as
TNBC. Degrader compounds, which induce pro-
teolysis of cyclin D rather than inhibit cyclin
D–CDK4/6 kinase, may have superior proper-
ties, as they would extinguish both CDK4/6-
dependent and -independent functions of
D-cyclins in tumorigenesis. Moreover, dissolu-
tion of cyclin D–CDK4/6 complexes is expected
to liberate KIP/CIP inhibitors, which would
then inhibit CDK2. D-cyclins likely play CDK-
independent functions in tumorigenesis—for
example, by regulating gene expression ( 166 ).
However, their role in tumor biology and the
utility of targeting these functions for cancer
treatment remain largely unexplored.
An important challenge will be to test and
identify combinatorial treatments involving
CDK4/6 inhibitors for the treatment of differ-
ent tumor types. CDK4/6 inhibitors trigger cell
cycle arrest of tumor cells and, in some cases,
senescence. It will be essential to identify com-
bination treatments that convert CDK4/6 in-
hibitors from cytostatic compounds to cytotoxic
ones, which would unleash the killing of tumor
cells. Genome-wide high-throughput screens
along with analyses of mouse cancer models
andPDXswillhelptoaddressthispoint.
Another largely unexplored area of cyclin D–
CDK4/6 biology is the possible involvement
of these proteins in other pathologies, such
as metabolic disorders. Research in this area
may extend the use of CDK4/6 inhibitors to
treatment of other diseases. All these un-
resolved questions ensure that CDK4/6 biology
will remain an active area of basic, translational,
and clinical research for several years to come.
REFERENCESANDNOTES
- H. Matsushime, M. F. Roussel, R. A. Ashmun, C. J. Sherr,
 Colony-stimulating factor 1 regulates novel cyclins during the
 G1 phase of the cell cycle.Cell 65 , 701–713 (1991).
 doi:10.1016/0092-8674(91)90101-4; pmid: 1827757
- Y. Xiong, T. Connolly, B. Futcher, D. Beach, Human D-type
 cyclin.Cell 65 , 691–699 (1991). doi:10.1016/
 0092-8674(91)90100-D; pmid: 1827756
- T. Motokuraet al., A novel cyclin encoded by a bcl1-linked
 candidate oncogene.Nature 350 , 512–515 (1991).
 doi:10.1038/350512a0; pmid: 1826542
- D. A. Witherset al., Characterization of a candidate
 bcl-1 gene.Mol. Cell. Biol. 11 , 4846–4853 (1991).
 pmid: 1833629
- M. Malumbres, M. Barbacid, To cycle or not to cycle: A
 critical decision in cancer.Nat. Rev. Cancer 1 , 222– 231
 (2001). doi:10.1038/35106065; pmid: 11902577
- C. J. Sherr, J. M. Roberts, CDK inhibitors: Positive and
 negative regulators of G1-phase progression.Genes Dev. 13 ,
 1501 – 1512 (1999). doi:10.1101/gad.13.12.1501;
 pmid: 10385618
- M. Malumbreset al., Mammalian cells cycle without the D-type
 cyclin-dependent kinases Cdk4 and Cdk6.Cell 118 , 493– 504
 (2004). doi:10.1016/j.cell.2004.08.002; pmid: 15315761
- K. Kozaret al., Mouse development and cell proliferation in
 the absence of D-cyclins.Cell 118 , 477–491 (2004).
 doi:10.1016/j.cell.2004.07.025; pmid: 15315760
- T. Otto, P. Sicinski, Cell cycle proteins as promising targets in
 cancer therapy.Nat. Rev. Cancer 17 , 93–115 (2017).
 doi:10.1038/nrc.2016.138; pmid: 28127048
- M. Chenget al., The p21(Cip1) and p27(Kip1) CDK‘inhibitors’
 are essential activators of cyclin D-dependent kinases in
 murine fibroblasts.EMBO J. 18 , 1571–1583 (1999).
 doi:10.1093/emboj/18.6.1571; pmid: 10075928
 11. M. K. James, A. Ray, D. Leznova, S. W. Blain, Differential
 modification of p27Kip1 controls its cyclin D-cdk4 inhibitory
 activity.Mol. Cell. Biol. 28 , 498–510 (2008). doi:10.1128/
 MCB.02171-06; pmid: 17908796
 12. A. Ray, M. K. James, S. Larochelle, R. P. Fisher, S. W. Blain,
 p27Kip1 inhibits cyclin D-cyclin-dependent kinase 4 by
 two independent modes.Mol. Cell. Biol. 29 , 986–999 (2009).
 doi:10.1128/MCB.00898-08; pmid: 19075005
 13. P. Patelet al., Brk/Protein tyrosine kinase 6 phosphorylates
 p27KIP1, regulating the activity of cyclin D-cyclin-dependent
 kinase 4.Mol. Cell. Biol. 35 , 1506–1522 (2015).
 doi:10.1128/MCB.01206-14; pmid: 25733683
 14. S. W. Blain, Switching cyclin D-Cdk4 kinase activity on and
 off.Cell Cycle 7 , 892–898 (2008). doi:10.4161/cc.7.7.5637;
 pmid: 18414028
 15. J. A. Diehl, M. Cheng, M. F. Roussel, C. J. Sherr, Glycogen
 synthase kinase-3bregulates cyclin D1 proteolysis and
 subcellular localization.Genes Dev. 12 , 3499–3511 (1998).
 doi:10.1101/gad.12.22.3499; pmid: 9832503
 16. J. R. Alt, J. L. Cleveland, M. Hannink, J. A. Diehl,
 Phosphorylation-dependent regulation of cyclin D1 nuclear
 export and cyclin D1-dependent cellular transformation.
 Genes Dev. 14 , 3102–3114 (2000). doi:10.1101/gad.854900;
 pmid: 11124803
 17. S. Qie, J. A. Diehl, Cyclin D1, cancer progression, and
 opportunities in cancer treatment.J. Mol. Med. 94 ,
 1313 – 1326 (2016). doi:10.1007/s00109-016-1475-3;
 pmid: 27695879
 18. A. Yoshidaet al., Fbxl8 suppresses lymphoma growth and
 hematopoietic transformation through degradation of cyclin
 D3.Oncogene 40 , 292–306 (2021). doi:10.1038/
 s41388-020-01532-4; pmid: 33122824
 19. T. Kanieet al., Genetic reevaluation of the role of F-box
 proteins in cyclin D1 degradation.Mol. Cell. Biol. 32 , 590– 605
 (2012). doi:10.1128/MCB.06570-11; pmid: 22124152
 20. A. C. Chaikovskyet al., The AMBRA1 E3 ligase adaptor
 regulates the stability of cyclin D.Nature 592 ,
 794 – 798 (2021). doi:10.1038/s41586-021-03474-7;
 pmid: 33854239
 21. E. Maianiet al., AMBRA1 regulates cyclin D to guard S-phase
 entry and genomic integrity.Nature 592 , 799–803 (2021).
 doi:10.1038/s41586-021-03422-5; pmid: 33854232
 22. D. Simoneschiet al., CRL4AMBRA1is a master regulator of
 D-type cyclins.Nature 592 , 789–793 (2021). doi:10.1038/
 s41586-021-03445-y; pmid: 33854235
 23. M. Hall, G. Peters, Genetic alterations of cyclins, cyclin-
 dependent kinases, and Cdk inhibitors in human cancer.
 Adv. Cancer Res. 68 , 67–108 (1996). doi:10.1016/S0065-230X
 (08)60352-8; pmid: 8712071
 24. A. Arnold, A. Papanikolaou, Cyclin D1 in breast cancer
 pathogenesis.J. Clin. Oncol. 23 , 4215–4224 (2005).
 doi:10.1200/JCO.2005.05.064; pmid: 15961768
 25. T. C. Wanget al., Mammary hyperplasia and carcinoma in
 MMTV-cyclin D1 transgenic mice.Nature 369 , 669– 671
 (1994). doi:10.1038/369669a0; pmid: 8208295
 26. M. W. Landis, B. S. Pawlyk, T. Li, P. Sicinski, P. W. Hinds,
 Cyclin D1-dependent kinase activity in murine development
 and mammary tumorigenesis.Cancer Cell 9 , 13–22 (2006).
 doi:10.1016/j.ccr.2005.12.019; pmid: 16413468
 27. H. K. Reddyet al., Cyclin-dependent kinase 4 expression is
 essential for neu-induced breast tumorigenesis.Cancer Res. 65 ,
 10174 – 10178 (2005). doi:10.1158/0008-5472.CAN-05-2639;
 pmid: 16288002
 28. Q. Yu, Y. Geng, P. Sicinski, Specific protection against breast
 cancers by cyclin D1 ablation.Nature 411 , 1017– 1021
 (2001). doi:10.1038/35082500; pmid: 11429595
 29. Q. Yuet al., Requirement for CDK4 kinase function in breast
 cancer.Cancer Cell 9 , 23–32 (2006). doi:10.1016/
 j.ccr.2005.12.012; pmid: 16413469
 30. Y. J. Choiet al., The requirement for cyclin D function in
 tumor maintenance.Cancer Cell 22 , 438–451 (2012).
 doi:10.1016/j.ccr.2012.09.015; pmid: 23079655
 31. M. Puyolet al., A synthetic lethal interaction between
 K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for
 non-small cell lung carcinoma.Cancer Cell 18 , 63–73 (2010).
 doi:10.1016/j.ccr.2010.05.025; pmid: 20609353
 32. A. M. Narasimhaet al., Cyclin D activates the Rb tumor
 suppressor by mono-phosphorylation.eLife 3 , e02872
 (2014). doi:10.7554/eLife.02872; pmid: 24876129
 33. M. Chunget al., Transient Hysteresis in CDK4/6 Activity
 Underlies Passage of the Restriction Point in G1.Mol. Cell
 76 , 562–573.e4 (2019). doi:10.1016/j.molcel.2019.08.020;
 pmid: 31543423
 34. B. R. Topacioet al., Cyclin D-Cdk4,6 Drives Cell-Cycle
 Progression via the Retinoblastoma Protein’s C-Terminal
 Helix.Mol. Cell 74 , 758–770.e4 (2019). doi:10.1016/
 j.molcel.2019.03.020; pmid: 30982746
 35. L. Anderset al., A systematic screen for CDK4/6 substrates
 links FOXM1 phosphorylation to senescence suppression in
 cancer cells.Cancer Cell 20 , 620–634 (2011). doi:10.1016/
 j.ccr.2011.10.001; pmid: 22094256
 36. I. Matsuuraet al., Cyclin-dependent kinases regulate the
 antiproliferative function of Smads.Nature 430 , 226– 231
 (2004). doi:10.1038/nature02650; pmid: 15241418
 37. I. Theet al., Rb and FZR1/Cdh1 determine CDK4/6-cyclin
 D requirement in C. elegans and human cancer cells.
 Nat. Commun. 6 , 5906 (2015). doi:10.1038/ncomms6906;
 pmid: 25562820
 38. J. Romero-Pozuelo, G. Figlia, O. Kaya, A. Martin-Villalba,
 A. A. Teleman, Cdk4 and Cdk6 Couple the Cell-Cycle
 Machinery to Cell Growth via mTORC1.Cell Rep. 31 ,
 107504 (2020). doi:10.1016/j.celrep.2020.03.068;
 pmid: 32294430
 39. P. Aggarwalet al., Nuclear cyclin D1/CDK4 kinase regulates
 CUL4 expression and triggers neoplastic growth via
 activation of the PRMT5 methyltransferase.Cancer Cell 18 ,
 329 – 340 (2010). doi:10.1016/j.ccr.2010.08.012;
 pmid: 20951943
 40. Y. Liet al., PRMT5 is required for lymphomagenesis
 triggered by multiple oncogenic drivers.Cancer Discov. 5 ,
 288 – 303 (2015). doi:10.1158/2159-8290.CD-14-0625;
 pmid: 25582697
 41. S. AbuHammadet al., Regulation of PRMT5-MDM4 axis is
 critical in the response to CDK4/6 inhibitors in melanoma.
 Proc. Natl. Acad. Sci. U.S.A. 116 , 17990–18000 (2019).
 doi:10.1073/pnas.1901323116; pmid: 31439820
 42. F. Belluttiet al., CDK6 Antagonizes p53-Induced Responses
 during Tumorigenesis.Cancer Discov. 8 , 884–897 (2018).
 doi:10.1158/2159-8290.CD-17-0912; pmid: 29899063
 43. I. Z. Uraset al., Palbociclib treatment of FLT3-ITD+ AML cells
 uncovers a kinase-dependent transcriptional regulation of
 FLT3 and PIM1 by CDK6.Blood 127 , 2890–2902 (2016).
 doi:10.1182/blood-2015-11-683581; pmid: 27099147
 44. K. Z. Guileyet al., p27 allosterically activates cyclin-
 dependent kinase 4 and antagonizes palbociclib inhibition.
 Science 366 , eaaw2106 (2019). doi:10.1126/science.
 aaw2106; pmid: 31831640
 45. R. S. Finnet al., PD 0332991, a selective cyclin D kinase
 4/6 inhibitor, preferentially inhibits proliferation of luminal
 estrogen receptor-positive human breast cancer cell lines in
 vitro.Breast Cancer Res. 11 , R77 (2009). doi:10.1186/
 bcr2419; pmid: 19874578
 46. D. W. Fryet al., Specific inhibition of cyclin-dependent kinase
 4/6 by PD 0332991 and associated antitumor activity in
 human tumor xenografts.Mol. Cancer Ther. 3 , 1427– 1438
 (2004). pmid: 15542782
 47. N. S. Zainalet al., Effects of palbociclib on oral squamous cell
 carcinoma and the role ofPIK3CAin conferring resistance.
 Cancer Biol. Med. 16 , 264–275 (2019). doi:10.20892/
 j.issn.2095-3941.2018.0257; pmid: 31516747
 48. R. Saabet al., Pharmacologic inhibition of cyclin-dependent
 kinase 4/6 activity arrests proliferation in myoblasts and
 rhabdomyosarcoma-derived cells.Mol. Cancer Ther. 5 ,
 1299 – 1308 (2006). doi:10.1158/1535-7163.MCT-05-0383;
 pmid: 16731763
 49. S. Paternot, B. Colleoni, X. Bisteau, P. P. Roger, The
 CDK4/CDK6 inhibitor PD0332991 paradoxically stabilizes
 activated cyclin D3-CDK4/6 complexes.Cell Cycle 13 ,
 2879 – 2888 (2014). doi:10.4161/15384101.2014.946841;
 pmid: 25486476
 50. Y. Genget al., Kinase-independent function of E-type cyclins
 in liver cancer.Proc. Natl. Acad. Sci. U.S.A. 115 , 1015– 1020
 (2018). doi:10.1073/pnas.1711477115; pmid: 29339491
 51. O. Tetsu, F. McCormick, Proliferation of cancer cells despite
 CDK2 inhibition.Cancer Cell 3 , 233–245 (2003).
 doi:10.1016/S1535-6108(03)00053-9; pmid: 12676582
 52. S. T. Hallettet al., Differential Regulation of G1 CDK
 Complexes by the Hsp90-Cdc37 Chaperone System.Cell
 Rep. 21 , 1386–1398 (2017). doi:10.1016/j.celrep.2017.10.042;
 pmid: 29091774
 53. S. Polieret al., ATP-competitive inhibitors block protein
 kinase recruitment to the Hsp90-Cdc37 system.Nat. Chem.
 Biol. 9 , 307–312 (2013). doi:10.1038/nchembio.1212;
 pmid: 23502424
 54. J. L. Dean, C. Thangavel, A. K. McClendon, C. A. Reed,
 E. S. Knudsen, Therapeutic CDK4/6 inhibition in breast
Fasslet al.,Science 375 , eabc1495 (2022) 14 January 2022 17 of 19
RESEARCH | REVIEW
