Science - USA (2022-01-14)

(Antfer) #1

escape lysosomal sequestration and may be ef-
ficacious against resistant cancer types such as
TNBC. Degrader compounds, which induce pro-
teolysis of cyclin D rather than inhibit cyclin
D–CDK4/6 kinase, may have superior proper-
ties, as they would extinguish both CDK4/6-
dependent and -independent functions of
D-cyclins in tumorigenesis. Moreover, dissolu-
tion of cyclin D–CDK4/6 complexes is expected
to liberate KIP/CIP inhibitors, which would
then inhibit CDK2. D-cyclins likely play CDK-
independent functions in tumorigenesis—for
example, by regulating gene expression ( 166 ).
However, their role in tumor biology and the
utility of targeting these functions for cancer
treatment remain largely unexplored.
An important challenge will be to test and
identify combinatorial treatments involving
CDK4/6 inhibitors for the treatment of differ-
ent tumor types. CDK4/6 inhibitors trigger cell
cycle arrest of tumor cells and, in some cases,
senescence. It will be essential to identify com-
bination treatments that convert CDK4/6 in-
hibitors from cytostatic compounds to cytotoxic
ones, which would unleash the killing of tumor
cells. Genome-wide high-throughput screens
along with analyses of mouse cancer models
andPDXswillhelptoaddressthispoint.
Another largely unexplored area of cyclin D–
CDK4/6 biology is the possible involvement
of these proteins in other pathologies, such
as metabolic disorders. Research in this area
may extend the use of CDK4/6 inhibitors to
treatment of other diseases. All these un-
resolved questions ensure that CDK4/6 biology
will remain an active area of basic, translational,
and clinical research for several years to come.


REFERENCESANDNOTES



  1. H. Matsushime, M. F. Roussel, R. A. Ashmun, C. J. Sherr,
    Colony-stimulating factor 1 regulates novel cyclins during the
    G1 phase of the cell cycle.Cell 65 , 701–713 (1991).
    doi:10.1016/0092-8674(91)90101-4; pmid: 1827757

  2. Y. Xiong, T. Connolly, B. Futcher, D. Beach, Human D-type
    cyclin.Cell 65 , 691–699 (1991). doi:10.1016/
    0092-8674(91)90100-D; pmid: 1827756

  3. T. Motokuraet al., A novel cyclin encoded by a bcl1-linked
    candidate oncogene.Nature 350 , 512–515 (1991).
    doi:10.1038/350512a0; pmid: 1826542

  4. D. A. Witherset al., Characterization of a candidate
    bcl-1 gene.Mol. Cell. Biol. 11 , 4846–4853 (1991).
    pmid: 1833629

  5. M. Malumbres, M. Barbacid, To cycle or not to cycle: A
    critical decision in cancer.Nat. Rev. Cancer 1 , 222– 231
    (2001). doi:10.1038/35106065; pmid: 11902577

  6. C. J. Sherr, J. M. Roberts, CDK inhibitors: Positive and
    negative regulators of G1-phase progression.Genes Dev. 13 ,
    1501 – 1512 (1999). doi:10.1101/gad.13.12.1501;
    pmid: 10385618

  7. M. Malumbreset al., Mammalian cells cycle without the D-type
    cyclin-dependent kinases Cdk4 and Cdk6.Cell 118 , 493– 504
    (2004). doi:10.1016/j.cell.2004.08.002; pmid: 15315761

  8. K. Kozaret al., Mouse development and cell proliferation in
    the absence of D-cyclins.Cell 118 , 477–491 (2004).
    doi:10.1016/j.cell.2004.07.025; pmid: 15315760

  9. T. Otto, P. Sicinski, Cell cycle proteins as promising targets in
    cancer therapy.Nat. Rev. Cancer 17 , 93–115 (2017).
    doi:10.1038/nrc.2016.138; pmid: 28127048

  10. M. Chenget al., The p21(Cip1) and p27(Kip1) CDK‘inhibitors’
    are essential activators of cyclin D-dependent kinases in
    murine fibroblasts.EMBO J. 18 , 1571–1583 (1999).
    doi:10.1093/emboj/18.6.1571; pmid: 10075928
    11. M. K. James, A. Ray, D. Leznova, S. W. Blain, Differential
    modification of p27Kip1 controls its cyclin D-cdk4 inhibitory
    activity.Mol. Cell. Biol. 28 , 498–510 (2008). doi:10.1128/
    MCB.02171-06; pmid: 17908796
    12. A. Ray, M. K. James, S. Larochelle, R. P. Fisher, S. W. Blain,
    p27Kip1 inhibits cyclin D-cyclin-dependent kinase 4 by
    two independent modes.Mol. Cell. Biol. 29 , 986–999 (2009).
    doi:10.1128/MCB.00898-08; pmid: 19075005
    13. P. Patelet al., Brk/Protein tyrosine kinase 6 phosphorylates
    p27KIP1, regulating the activity of cyclin D-cyclin-dependent
    kinase 4.Mol. Cell. Biol. 35 , 1506–1522 (2015).
    doi:10.1128/MCB.01206-14; pmid: 25733683
    14. S. W. Blain, Switching cyclin D-Cdk4 kinase activity on and
    off.Cell Cycle 7 , 892–898 (2008). doi:10.4161/cc.7.7.5637;
    pmid: 18414028
    15. J. A. Diehl, M. Cheng, M. F. Roussel, C. J. Sherr, Glycogen
    synthase kinase-3bregulates cyclin D1 proteolysis and
    subcellular localization.Genes Dev. 12 , 3499–3511 (1998).
    doi:10.1101/gad.12.22.3499; pmid: 9832503
    16. J. R. Alt, J. L. Cleveland, M. Hannink, J. A. Diehl,
    Phosphorylation-dependent regulation of cyclin D1 nuclear
    export and cyclin D1-dependent cellular transformation.
    Genes Dev. 14 , 3102–3114 (2000). doi:10.1101/gad.854900;
    pmid: 11124803
    17. S. Qie, J. A. Diehl, Cyclin D1, cancer progression, and
    opportunities in cancer treatment.J. Mol. Med. 94 ,
    1313 – 1326 (2016). doi:10.1007/s00109-016-1475-3;
    pmid: 27695879
    18. A. Yoshidaet al., Fbxl8 suppresses lymphoma growth and
    hematopoietic transformation through degradation of cyclin
    D3.Oncogene 40 , 292–306 (2021). doi:10.1038/
    s41388-020-01532-4; pmid: 33122824
    19. T. Kanieet al., Genetic reevaluation of the role of F-box
    proteins in cyclin D1 degradation.Mol. Cell. Biol. 32 , 590– 605
    (2012). doi:10.1128/MCB.06570-11; pmid: 22124152
    20. A. C. Chaikovskyet al., The AMBRA1 E3 ligase adaptor
    regulates the stability of cyclin D.Nature 592 ,
    794 – 798 (2021). doi:10.1038/s41586-021-03474-7;
    pmid: 33854239
    21. E. Maianiet al., AMBRA1 regulates cyclin D to guard S-phase
    entry and genomic integrity.Nature 592 , 799–803 (2021).
    doi:10.1038/s41586-021-03422-5; pmid: 33854232
    22. D. Simoneschiet al., CRL4AMBRA1is a master regulator of
    D-type cyclins.Nature 592 , 789–793 (2021). doi:10.1038/
    s41586-021-03445-y; pmid: 33854235
    23. M. Hall, G. Peters, Genetic alterations of cyclins, cyclin-
    dependent kinases, and Cdk inhibitors in human cancer.
    Adv. Cancer Res. 68 , 67–108 (1996). doi:10.1016/S0065-230X
    (08)60352-8; pmid: 8712071
    24. A. Arnold, A. Papanikolaou, Cyclin D1 in breast cancer
    pathogenesis.J. Clin. Oncol. 23 , 4215–4224 (2005).
    doi:10.1200/JCO.2005.05.064; pmid: 15961768
    25. T. C. Wanget al., Mammary hyperplasia and carcinoma in
    MMTV-cyclin D1 transgenic mice.Nature 369 , 669– 671
    (1994). doi:10.1038/369669a0; pmid: 8208295
    26. M. W. Landis, B. S. Pawlyk, T. Li, P. Sicinski, P. W. Hinds,
    Cyclin D1-dependent kinase activity in murine development
    and mammary tumorigenesis.Cancer Cell 9 , 13–22 (2006).
    doi:10.1016/j.ccr.2005.12.019; pmid: 16413468
    27. H. K. Reddyet al., Cyclin-dependent kinase 4 expression is
    essential for neu-induced breast tumorigenesis.Cancer Res. 65 ,
    10174 – 10178 (2005). doi:10.1158/0008-5472.CAN-05-2639;
    pmid: 16288002
    28. Q. Yu, Y. Geng, P. Sicinski, Specific protection against breast
    cancers by cyclin D1 ablation.Nature 411 , 1017– 1021
    (2001). doi:10.1038/35082500; pmid: 11429595
    29. Q. Yuet al., Requirement for CDK4 kinase function in breast
    cancer.Cancer Cell 9 , 23–32 (2006). doi:10.1016/
    j.ccr.2005.12.012; pmid: 16413469
    30. Y. J. Choiet al., The requirement for cyclin D function in
    tumor maintenance.Cancer Cell 22 , 438–451 (2012).
    doi:10.1016/j.ccr.2012.09.015; pmid: 23079655
    31. M. Puyolet al., A synthetic lethal interaction between
    K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for
    non-small cell lung carcinoma.Cancer Cell 18 , 63–73 (2010).
    doi:10.1016/j.ccr.2010.05.025; pmid: 20609353
    32. A. M. Narasimhaet al., Cyclin D activates the Rb tumor
    suppressor by mono-phosphorylation.eLife 3 , e02872
    (2014). doi:10.7554/eLife.02872; pmid: 24876129
    33. M. Chunget al., Transient Hysteresis in CDK4/6 Activity
    Underlies Passage of the Restriction Point in G1.Mol. Cell
    76 , 562–573.e4 (2019). doi:10.1016/j.molcel.2019.08.020;
    pmid: 31543423
    34. B. R. Topacioet al., Cyclin D-Cdk4,6 Drives Cell-Cycle
    Progression via the Retinoblastoma Protein’s C-Terminal
    Helix.Mol. Cell 74 , 758–770.e4 (2019). doi:10.1016/
    j.molcel.2019.03.020; pmid: 30982746
    35. L. Anderset al., A systematic screen for CDK4/6 substrates
    links FOXM1 phosphorylation to senescence suppression in
    cancer cells.Cancer Cell 20 , 620–634 (2011). doi:10.1016/
    j.ccr.2011.10.001; pmid: 22094256
    36. I. Matsuuraet al., Cyclin-dependent kinases regulate the
    antiproliferative function of Smads.Nature 430 , 226– 231
    (2004). doi:10.1038/nature02650; pmid: 15241418
    37. I. Theet al., Rb and FZR1/Cdh1 determine CDK4/6-cyclin
    D requirement in C. elegans and human cancer cells.
    Nat. Commun. 6 , 5906 (2015). doi:10.1038/ncomms6906;
    pmid: 25562820
    38. J. Romero-Pozuelo, G. Figlia, O. Kaya, A. Martin-Villalba,
    A. A. Teleman, Cdk4 and Cdk6 Couple the Cell-Cycle
    Machinery to Cell Growth via mTORC1.Cell Rep. 31 ,
    107504 (2020). doi:10.1016/j.celrep.2020.03.068;
    pmid: 32294430
    39. P. Aggarwalet al., Nuclear cyclin D1/CDK4 kinase regulates
    CUL4 expression and triggers neoplastic growth via
    activation of the PRMT5 methyltransferase.Cancer Cell 18 ,
    329 – 340 (2010). doi:10.1016/j.ccr.2010.08.012;
    pmid: 20951943
    40. Y. Liet al., PRMT5 is required for lymphomagenesis
    triggered by multiple oncogenic drivers.Cancer Discov. 5 ,
    288 – 303 (2015). doi:10.1158/2159-8290.CD-14-0625;
    pmid: 25582697
    41. S. AbuHammadet al., Regulation of PRMT5-MDM4 axis is
    critical in the response to CDK4/6 inhibitors in melanoma.
    Proc. Natl. Acad. Sci. U.S.A. 116 , 17990–18000 (2019).
    doi:10.1073/pnas.1901323116; pmid: 31439820
    42. F. Belluttiet al., CDK6 Antagonizes p53-Induced Responses
    during Tumorigenesis.Cancer Discov. 8 , 884–897 (2018).
    doi:10.1158/2159-8290.CD-17-0912; pmid: 29899063
    43. I. Z. Uraset al., Palbociclib treatment of FLT3-ITD+ AML cells
    uncovers a kinase-dependent transcriptional regulation of
    FLT3 and PIM1 by CDK6.Blood 127 , 2890–2902 (2016).
    doi:10.1182/blood-2015-11-683581; pmid: 27099147
    44. K. Z. Guileyet al., p27 allosterically activates cyclin-
    dependent kinase 4 and antagonizes palbociclib inhibition.
    Science 366 , eaaw2106 (2019). doi:10.1126/science.
    aaw2106; pmid: 31831640
    45. R. S. Finnet al., PD 0332991, a selective cyclin D kinase
    4/6 inhibitor, preferentially inhibits proliferation of luminal
    estrogen receptor-positive human breast cancer cell lines in
    vitro.Breast Cancer Res. 11 , R77 (2009). doi:10.1186/
    bcr2419; pmid: 19874578
    46. D. W. Fryet al., Specific inhibition of cyclin-dependent kinase
    4/6 by PD 0332991 and associated antitumor activity in
    human tumor xenografts.Mol. Cancer Ther. 3 , 1427– 1438
    (2004). pmid: 15542782
    47. N. S. Zainalet al., Effects of palbociclib on oral squamous cell
    carcinoma and the role ofPIK3CAin conferring resistance.
    Cancer Biol. Med. 16 , 264–275 (2019). doi:10.20892/
    j.issn.2095-3941.2018.0257; pmid: 31516747
    48. R. Saabet al., Pharmacologic inhibition of cyclin-dependent
    kinase 4/6 activity arrests proliferation in myoblasts and
    rhabdomyosarcoma-derived cells.Mol. Cancer Ther. 5 ,
    1299 – 1308 (2006). doi:10.1158/1535-7163.MCT-05-0383;
    pmid: 16731763
    49. S. Paternot, B. Colleoni, X. Bisteau, P. P. Roger, The
    CDK4/CDK6 inhibitor PD0332991 paradoxically stabilizes
    activated cyclin D3-CDK4/6 complexes.Cell Cycle 13 ,
    2879 – 2888 (2014). doi:10.4161/15384101.2014.946841;
    pmid: 25486476
    50. Y. Genget al., Kinase-independent function of E-type cyclins
    in liver cancer.Proc. Natl. Acad. Sci. U.S.A. 115 , 1015– 1020
    (2018). doi:10.1073/pnas.1711477115; pmid: 29339491
    51. O. Tetsu, F. McCormick, Proliferation of cancer cells despite
    CDK2 inhibition.Cancer Cell 3 , 233–245 (2003).
    doi:10.1016/S1535-6108(03)00053-9; pmid: 12676582
    52. S. T. Hallettet al., Differential Regulation of G1 CDK
    Complexes by the Hsp90-Cdc37 Chaperone System.Cell
    Rep. 21 , 1386–1398 (2017). doi:10.1016/j.celrep.2017.10.042;
    pmid: 29091774
    53. S. Polieret al., ATP-competitive inhibitors block protein
    kinase recruitment to the Hsp90-Cdc37 system.Nat. Chem.
    Biol. 9 , 307–312 (2013). doi:10.1038/nchembio.1212;
    pmid: 23502424
    54. J. L. Dean, C. Thangavel, A. K. McClendon, C. A. Reed,
    E. S. Knudsen, Therapeutic CDK4/6 inhibition in breast


Fasslet al.,Science 375 , eabc1495 (2022) 14 January 2022 17 of 19


RESEARCH | REVIEW

Free download pdf