Science - USA (2022-01-14)

(Antfer) #1
cancer: Key mechanisms of response and failure.Oncogene
29 , 4018–4032 (2010). doi:10.1038/onc.2010.154;
pmid: 20473330


  1. J. Lukas, J. Bartkova, M. Rohde, M. Strauss, J. Bartek, Cyclin
    D1 is dispensable for G1 control in retinoblastoma gene-
    deficient cells independently of cdk4 activity.Mol. Cell. Biol.
    15 , 2600–2611 (1995). doi:10.1128/MCB.15.5.2600;
    pmid: 7739541

  2. J. Lukaset al., Retinoblastoma-protein-dependent cell-cycle
    inhibition by the tumour suppressor p16.Nature 375 ,
    503 – 506 (1995). doi:10.1038/375503a0; pmid: 7777060

  3. R. H. Medema, R. E. Herrera, F. Lam, R. A. Weinberg, Growth
    suppression by p16ink4 requires functional retinoblastoma
    protein.Proc. Natl. Acad. Sci. U.S.A. 92 , 6289–6293 (1995).
    doi:10.1073/pnas.92.14.6289; pmid: 7603984

  4. X. Gonget al., Genomic Aberrations that Activate D-type
    Cyclins Are Associated with Enhanced Sensitivity to the
    CDK4 and CDK6 Inhibitor Abemaciclib.Cancer Cell 32 ,
    761 – 776.e6 (2017). doi:10.1016/j.ccell.2017.11.006;
    pmid: 29232554

  5. S. Kimet al., The potent and selective cyclin-dependent
    kinases 4 and 6 inhibitor ribociclib (LEE011) is a versatile
    combination partner in preclinical cancer models.Oncotarget
    9 , 35226–35240 (2018). doi:10.18632/oncotarget.26215;
    pmid: 30443290

  6. J. E. Bisi, J. A. Sorrentino, P. J. Roberts, F. X. Tavares,
    J. C. Strum, Preclinical Characterization of G1T28: A Novel
    CDK4/6 Inhibitor for Reduction of Chemotherapy-Induced
    Myelosuppression.Mol. Cancer Ther. 15 , 783–793 (2016).
    doi:10.1158/1535-7163.MCT-15-0775; pmid: 26826116

  7. J. Raderet al., Dual CDK4/CDK6 inhibition induces cell-cycle
    arrest and senescence in neuroblastoma.Clin. Cancer Res.
    19 , 6173–6182 (2013). doi:10.1158/1078-0432.CCR-13-1675;
    pmid: 24045179

  8. R. Torres-Guzmánet al., Preclinical characterization of
    abemaciclib in hormone receptor positive breast cancer.
    Oncotarget 8 , 69493–69507 (2017). doi:10.18632/
    oncotarget.17778; pmid: 29050219

  9. K. Michaudet al., Pharmacologic inhibition of cyclin-
    dependent kinases 4 and 6 arrests the growth of glioblastoma
    multiforme intracranial xenografts.Cancer Res. 70 , 3228– 3238
    (2010). doi:10.1158/0008-5472.CAN-09-4559; pmid: 20354191

  10. T. J. Raubet al., Brain Exposure of Two Selective Dual
    CDK4 and CDK6 Inhibitors and the Antitumor Activity of
    CDK4 and CDK6 Inhibition in Combination with
    Temozolomide in an Intracranial Glioblastoma Xenograft.
    Drug Metab. Dispos. 43 , 1360–1371 (2015). doi:10.1124/
    dmd.114.062745; pmid: 26149830

  11. F. Longet al., Preclinical characterization of SHR6390, a
    novel CDK 4/6 inhibitor, in vitro and in human tumor
    xenograft models.Cancer Sci. 110 , 1420–1430 (2019).
    doi:10.1111/cas.13957; pmid: 30724426

  12. S. Linet al., FCN-437: A novel, potent and selective oral
    inhibitor of CDK4/6 for the treatment of solid tumors.Cancer
    Res. 79 (suppl. 13), 4425 (2019). doi:10.1158/1538-7445.
    AM2019-4425

  13. L. Yinet al., A highly potent CDK4/6 inhibitor was rationally
    designed to overcome blood brain barrier in gliobastoma
    therapy.Eur. J. Med. Chem. 144 ,1–28 (2018). doi:10.1016/
    j.ejmech.2017.12.003; pmid: 29247857

  14. C. Rubioet al., CDK4/6 Inhibitor as a Novel Therapeutic
    Approach for Advanced Bladder Cancer Independently of
    RB1Status.Clin. Cancer Res. 25 , 390–402 (2019).
    doi:10.1158/1078-0432.CCR-18-0685; pmid: 30242024

  15. D. L. Burkhart, J. Sage, Cellular mechanisms of tumour
    suppression by the retinoblastoma gene.Nat. Rev. Cancer
    8 , 671–682 (2008). doi:10.1038/nrc2399;
    pmid: 18650841

  16. A. Smirnovet al., FOXM1 regulates proliferation, senescence
    and oxidative stress in keratinocytes and cancer cells.
    Aging 8 , 1384–1397 (2016). doi:10.18632/aging.100988;
    pmid: 27385468

  17. S. Vijayaraghavanet al., CDK4/6 and autophagy inhibitors
    synergistically induce senescence in Rb positive cytoplasmic
    cyclin E negative cancers.Nat. Commun. 8 , 15916 (2017).
    doi:10.1038/ncomms15916; pmid: 28653662

  18. A. Yoshida, E. K. Lee, J. A. Diehl, Induction of Therapeutic
    Senescence in Vemurafenib-Resistant Melanoma by
    Extended Inhibition of CDK4/6.Cancer Res. 76 , 2990– 3002
    (2016). doi:10.1158/0008-5472.CAN-15-2931;
    pmid: 26988987

  19. M. Kovatchevaet al., MDM2 turnover and expression of ATRX
    determine the choice between quiescence and senescence in


response to CDK4 inhibition.Oncotarget 6 , 8226– 8243
(2015). doi:10.18632/oncotarget.3364; pmid: 25803170


  1. M. E. Kleinet al., PDLIM7 and CDH18 regulate the turnover of
    MDM2 during CDK4/6 inhibitor therapy-induced senescence.
    Oncogene 37 , 5066–5078 (2018). doi:10.1038/s41388-018-
    0332-y; pmid: 29789718

  2. W. R. Wiedemeyeret al., Pattern of retinoblastoma pathway
    inactivation dictates response to CDK4/6 inhibition in GBM.
    Proc. Natl. Acad. Sci. U.S.A. 107 , 11501–11506 (2010).
    doi:10.1073/pnas.1001613107; pmid: 20534551

  3. S. R. S. Gottesmanet al., Tyrosine Phosphorylation of
    p27Kip1 Correlates with Palbociclib Responsiveness in Breast
    Cancer Tumor Cells Grown in Explant Culture.
    Mol. Cancer Res. 17 , 669–675 (2019). doi:10.1158/
    1541-7786.MCR-18-0188; pmid: 30559257

  4. E. Raspéet al., CDK4 phosphorylation status and a linked
    gene expression profile predict sensitivity to palbociclib.
    EMBO Mol. Med. 9 , 1052–1066 (2017). doi:10.15252/
    emmm.201607084; pmid: 28566333

  5. R. S. Finnet al., The cyclin-dependent kinase 4/6 inhibitor
    palbociclib in combination with letrozole versus letrozole
    alone as first-line treatment of oestrogen receptor-positive,
    HER2-negative, advanced breast cancer (PALOMA-1/
    TRIO-18): A randomised phase 2 study.Lancet Oncol. 16 ,
    25 – 35 (2015). doi:10.1016/S1470-2045(14)71159-3;
    pmid: 25524798

  6. R. S. Finnet al., Biomarker Analyses of Response to
    Cyclin-Dependent Kinase 4/6 Inhibition and Endocrine
    Therapy in Women with Treatment-Naïve Metastatic Breast
    Cancer.Clin. Cancer Res. 26 , 110–121 (2020). doi:10.1158/
    1078-0432.CCR-19-0751; pmid: 31527167

  7. N. C. Turneret al., Cyclin E1 Expression and Palbociclib
    Efficacy in Previously Treated Hormone Receptor-Positive
    Metastatic Breast Cancer.J. Clin. Oncol. 37 , 1169– 1178
    (2019). doi:10.1200/JCO.18.00925; pmid: 30807234

  8. Z. Liet al., Loss of the FAT1 Tumor Suppressor Promotes
    Resistance to CDK4/6 Inhibitors via the Hippo Pathway.
    Cancer Cell 34 , 893–905.e8 (2018). doi:10.1016/
    j.ccell.2018.11.006; pmid: 30537512

  9. M. Cheng, V. Sexl, C. J. Sherr, M. F. Roussel, Assembly of
    cyclin D-dependent kinase and titration of p27Kip1 regulated
    by mitogen-activated protein kinase kinase (MEK1).
    Proc. Natl. Acad. Sci. U.S.A. 95 , 1091–1096 (1998).
    doi:10.1073/pnas.95.3.1091; pmid: 9448290

  10. E. A. Klein, R. K. Assoian, Transcriptional regulation of the
    cyclin D1 gene at a glance.J. Cell Sci. 121 , 3853– 3857
    (2008). doi:10.1242/jcs.039131; pmid: 19020303

  11. J. N. Lavoie, G. L’Allemain, A. Brunet, R. Müller, J. Pouysségur,
    Cyclin D1 expression is regulated positively by the p42/
    p44MAPK and negatively by the p38/HOGMAPK pathway.
    J. Biol. Chem. 271 , 20608–20616 (1996). doi:10.1074/
    jbc.271.34.20608; pmid: 8702807

  12. J. Lukas, J. Bartkova, J. Bartek, Convergence of mitogenic
    signalling cascades from diverse classes of receptors at the
    cyclin D-cyclin-dependent kinase-pRb-controlled G1
    checkpoint.Mol. Cell. Biol. 16 , 6917–6925 (1996).
    doi:10.1128/MCB.16.12.6917; pmid: 8943347

  13. R. C. Muise-Helmerickset al., Cyclin D expression is
    controlled post-transcriptionally via a phosphatidylinositol
    3-kinase/Akt-dependent pathway.J. Biol. Chem. 273 ,
    29864 – 29872 (1998). doi:10.1074/jbc.273.45.29864;
    pmid: 9792703

  14. M. Peket al., Oncogenic KRAS-associated gene signature
    defines co-targeting of CDK4/6 and MEK as a viable
    therapeutic strategy in colorectal cancer.Oncogene 36 ,
    4975 – 4986 (2017). doi:10.1038/onc.2017.120;
    pmid: 28459468

  15. S. R. Voraet al., CDK 4/6 inhibitors sensitize PIK3CA mutant
    breast cancer to PI3K inhibitors.Cancer Cell 26 , 136– 149
    (2014). doi:10.1016/j.ccr.2014.05.020; pmid: 25002028

  16. C. A. Martinet al., Palbociclib synergizes with BRAF and
    MEK inhibitors in treatment naïve melanoma but not after
    the development of BRAF inhibitor resistance.Int. J.
    Cancer 142 , 2139–2152 (2018). doi:10.1002/ijc.31220;
    pmid: 29243224

  17. J. L. F. Tehet al.,In VivoE2F Reporting Reveals Efficacious
    Schedules of MEK1/2-CDK4/6 Targeting and mTOR-S6
    Resistance Mechanisms.Cancer Discov. 8 , 568–581 (2018).
    doi:10.1158/2159-8290.CD-17-0699; pmid: 29496664

  18. A. Dall’Acquaet al., CDK6 protects epithelial ovarian cancer
    from platinum-induced death via FOXO3 regulation.
    EMBO Mol. Med. 9 , 1415–1433 (2017). doi:10.15252/
    emmm.201607012; pmid: 28778953
    92. H. Gaoet al., High-throughput screening using patient-
    derived tumor xenografts to predict clinical trial drug
    response.Nat. Med. 21 , 1318–1325 (2015). doi:10.1038/
    nm.3954; pmid: 26479923
    93. V. Yadavet al., The CDK4/6 inhibitor LY2835219 overcomes
    vemurafenib resistance resulting from MAPK reactivation
    and cyclin D1 upregulation.Mol. Cancer Ther. 13 , 2253– 2263
    (2014). doi:10.1158/1535-7163.MCT-14-0257;
    pmid: 25122067
    94. A. C. Woodet al., DualALKandCDK4/6Inhibition
    Demonstrates Synergy against Neuroblastoma.Clin. Cancer
    Res. 23 , 2856–2868 (2017). doi:10.1158/1078-0432.CCR-16-
    1114 ; pmid: 27986745
    95. S. Goelet al., Overcoming Therapeutic Resistance in
    HER2-Positive Breast Cancers with CDK4/6 Inhibitors.
    Cancer Cell 29 , 255–269 (2016). doi:10.1016/
    j.ccell.2016.02.006; pmid: 26977878
    96. J. L. Dean, A. K. McClendon, E. S. Knudsen, Modification of
    the DNA damage response by therapeutic CDK4/6 inhibition.
    J. Biol. Chem. 287 , 29075–29087 (2012). doi:10.1074/
    jbc.M112.365494; pmid: 22733811
    97. Y. Pikmanet al., Synergistic Drug Combinations with a
    CDK4/6 Inhibitor in T-cell Acute Lymphoblastic Leukemia.
    Clin. Cancer Res. 23 , 1012–1024 (2017). doi:10.1158/
    1078-0432.CCR-15-2869; pmid: 28151717
    98. J. Caoet al., Combining CDK4/6 inhibition with taxanes
    enhances anti-tumor efficacy by sustained impairment of
    pRB-E2F pathways in squamous cell lung cancer.Oncogene
    38 , 4125–4141 (2019). doi:10.1038/s41388-019-0708-7;
    pmid: 30700828
    99. Y. Gaoet al., Inhibition of CDK4 sensitizes multidrug resistant
    ovarian cancer cells to paclitaxel by increasing apoptosiss.
    Cell Oncol. 40 , 209–218 (2017). doi:10.1007/
    s13402-017-0316-x; pmid: 28243976
    100. B. Salvador-Barberoet al., CDK4/6 Inhibitors Impair
    Recovery from Cytotoxic Chemotherapy in Pancreatic
    Adenocarcinoma.Cancer Cell 37 , 340–353.e6 (2020).
    doi:10.1016/j.ccell.2020.01.007; pmid: 32109375
    101. J. Yiet al., MYC status as a determinant of synergistic
    response to Olaparib and Palbociclib in ovarian cancer.
    EBioMedicine 43 , 225–237 (2019). doi:10.1016/
    j.ebiom.2019.03.027; pmid: 30898650
    102. D. Tempkaet al., Downregulation of PARP1 transcription by
    CDK4/6 inhibitors sensitizes human lung cancer cells to
    anticancer drug-induced death by impairing OGG1-dependent
    base excision repair.Redox Biol. 15 , 316–326 (2018).
    doi:10.1016/j.redox.2017.12.017; pmid: 29306194
    103. S. M. Johnsonet al., Mitigation of hematologic radiation
    toxicity in mice through pharmacological quiescence induced
    by CDK4/6 inhibition.J. Clin. Invest. 120 , 2528–2536 (2010).
    doi:10.1172/JCI41402; pmid: 20577054
    104. S. Heet al., Transient CDK4/6 inhibition protects
    hematopoietic stem cells from chemotherapy-induced
    exhaustion.Sci. Transl. Med. 9 , eaal3986 (2017).
    doi:10.1126/scitranslmed.aal3986; pmid: 28446688
    105. J. M. Weisset al., Myelopreservation with the CDK4/6
    inhibitor trilaciclib in patients with small-cell lung cancer
    receiving first-line chemotherapy: A phase Ib/randomized
    phase II trial.Ann. Oncol. 30 , 1613–1621 (2019). doi:10.1093/
    annonc/mdz278; pmid: 31504118
    106. A. R. Tanet al., Trilaciclib plus chemotherapy versus
    chemotherapy alone in patients with metastatic triple-
    negative breast cancer: A multicentre, randomised,
    open-label, phase 2 trial.Lancet Oncol. 20 , 1587– 1601
    (2019). doi:10.1016/S1470-2045(19)30616-3;
    pmid: 31575503
    107. J. O’Shaughnessyet al.,“Trilaciclib improves overall survival
    when given with gemcitabine/carboplatin in patients with
    metastatic triple-negative breast cancer.”Paper presented at
    the 2020 San Antonio Breast Cancer Symposium, abstract
    PD1-06 (2020).
    108. J. Franco, U. Balaji, E. Freinkman, A. K. Witkiewicz,
    E. S. Knudsen, Metabolic Reprogramming of Pancreatic
    Cancer Mediated by CDK4/6 Inhibition Elicits Unique
    Vulnerabilities.Cell Rep. 14 , 979–990 (2016). doi:10.1016/
    j.celrep.2015.12.094; pmid: 26804906
    109. Q. Yinet al., CDK4/6 regulate lysosome biogenesis through
    TFEB/TFE3.J. Cell Biol. 219 , e201911036 (2020).
    doi:10.1083/jcb.201911036; pmid: 32662822
    110. L. Martínez-Carrereset al., CDK4 Regulates Lysosomal
    Function and mTORC1 Activation to Promote Cancer Cell
    Survival.Cancer Res. 79 , 5245–5259 (2019). doi:10.1158/
    0008-5472.CAN-19-0708; pmid: 31395606


Fasslet al.,Science 375 , eabc1495 (2022) 14 January 2022 18 of 19


RESEARCH | REVIEW

Free download pdf