cancer: Key mechanisms of response and failure.Oncogene
29 , 4018–4032 (2010). doi:10.1038/onc.2010.154;
pmid: 20473330- J. Lukas, J. Bartkova, M. Rohde, M. Strauss, J. Bartek, Cyclin
 D1 is dispensable for G1 control in retinoblastoma gene-
 deficient cells independently of cdk4 activity.Mol. Cell. Biol.
 15 , 2600–2611 (1995). doi:10.1128/MCB.15.5.2600;
 pmid: 7739541
- J. Lukaset al., Retinoblastoma-protein-dependent cell-cycle
 inhibition by the tumour suppressor p16.Nature 375 ,
 503 – 506 (1995). doi:10.1038/375503a0; pmid: 7777060
- R. H. Medema, R. E. Herrera, F. Lam, R. A. Weinberg, Growth
 suppression by p16ink4 requires functional retinoblastoma
 protein.Proc. Natl. Acad. Sci. U.S.A. 92 , 6289–6293 (1995).
 doi:10.1073/pnas.92.14.6289; pmid: 7603984
- X. Gonget al., Genomic Aberrations that Activate D-type
 Cyclins Are Associated with Enhanced Sensitivity to the
 CDK4 and CDK6 Inhibitor Abemaciclib.Cancer Cell 32 ,
 761 – 776.e6 (2017). doi:10.1016/j.ccell.2017.11.006;
 pmid: 29232554
- S. Kimet al., The potent and selective cyclin-dependent
 kinases 4 and 6 inhibitor ribociclib (LEE011) is a versatile
 combination partner in preclinical cancer models.Oncotarget
 9 , 35226–35240 (2018). doi:10.18632/oncotarget.26215;
 pmid: 30443290
- J. E. Bisi, J. A. Sorrentino, P. J. Roberts, F. X. Tavares,
 J. C. Strum, Preclinical Characterization of G1T28: A Novel
 CDK4/6 Inhibitor for Reduction of Chemotherapy-Induced
 Myelosuppression.Mol. Cancer Ther. 15 , 783–793 (2016).
 doi:10.1158/1535-7163.MCT-15-0775; pmid: 26826116
- J. Raderet al., Dual CDK4/CDK6 inhibition induces cell-cycle
 arrest and senescence in neuroblastoma.Clin. Cancer Res.
 19 , 6173–6182 (2013). doi:10.1158/1078-0432.CCR-13-1675;
 pmid: 24045179
- R. Torres-Guzmánet al., Preclinical characterization of
 abemaciclib in hormone receptor positive breast cancer.
 Oncotarget 8 , 69493–69507 (2017). doi:10.18632/
 oncotarget.17778; pmid: 29050219
- K. Michaudet al., Pharmacologic inhibition of cyclin-
 dependent kinases 4 and 6 arrests the growth of glioblastoma
 multiforme intracranial xenografts.Cancer Res. 70 , 3228– 3238
 (2010). doi:10.1158/0008-5472.CAN-09-4559; pmid: 20354191
- T. J. Raubet al., Brain Exposure of Two Selective Dual
 CDK4 and CDK6 Inhibitors and the Antitumor Activity of
 CDK4 and CDK6 Inhibition in Combination with
 Temozolomide in an Intracranial Glioblastoma Xenograft.
 Drug Metab. Dispos. 43 , 1360–1371 (2015). doi:10.1124/
 dmd.114.062745; pmid: 26149830
- F. Longet al., Preclinical characterization of SHR6390, a
 novel CDK 4/6 inhibitor, in vitro and in human tumor
 xenograft models.Cancer Sci. 110 , 1420–1430 (2019).
 doi:10.1111/cas.13957; pmid: 30724426
- S. Linet al., FCN-437: A novel, potent and selective oral
 inhibitor of CDK4/6 for the treatment of solid tumors.Cancer
 Res. 79 (suppl. 13), 4425 (2019). doi:10.1158/1538-7445.
 AM2019-4425
- L. Yinet al., A highly potent CDK4/6 inhibitor was rationally
 designed to overcome blood brain barrier in gliobastoma
 therapy.Eur. J. Med. Chem. 144 ,1–28 (2018). doi:10.1016/
 j.ejmech.2017.12.003; pmid: 29247857
- C. Rubioet al., CDK4/6 Inhibitor as a Novel Therapeutic
 Approach for Advanced Bladder Cancer Independently of
 RB1Status.Clin. Cancer Res. 25 , 390–402 (2019).
 doi:10.1158/1078-0432.CCR-18-0685; pmid: 30242024
- D. L. Burkhart, J. Sage, Cellular mechanisms of tumour
 suppression by the retinoblastoma gene.Nat. Rev. Cancer
 8 , 671–682 (2008). doi:10.1038/nrc2399;
 pmid: 18650841
- A. Smirnovet al., FOXM1 regulates proliferation, senescence
 and oxidative stress in keratinocytes and cancer cells.
 Aging 8 , 1384–1397 (2016). doi:10.18632/aging.100988;
 pmid: 27385468
- S. Vijayaraghavanet al., CDK4/6 and autophagy inhibitors
 synergistically induce senescence in Rb positive cytoplasmic
 cyclin E negative cancers.Nat. Commun. 8 , 15916 (2017).
 doi:10.1038/ncomms15916; pmid: 28653662
- A. Yoshida, E. K. Lee, J. A. Diehl, Induction of Therapeutic
 Senescence in Vemurafenib-Resistant Melanoma by
 Extended Inhibition of CDK4/6.Cancer Res. 76 , 2990– 3002
 (2016). doi:10.1158/0008-5472.CAN-15-2931;
 pmid: 26988987
- M. Kovatchevaet al., MDM2 turnover and expression of ATRX
 determine the choice between quiescence and senescence in
response to CDK4 inhibition.Oncotarget 6 , 8226– 8243
(2015). doi:10.18632/oncotarget.3364; pmid: 25803170- M. E. Kleinet al., PDLIM7 and CDH18 regulate the turnover of
 MDM2 during CDK4/6 inhibitor therapy-induced senescence.
 Oncogene 37 , 5066–5078 (2018). doi:10.1038/s41388-018-
 0332-y; pmid: 29789718
- W. R. Wiedemeyeret al., Pattern of retinoblastoma pathway
 inactivation dictates response to CDK4/6 inhibition in GBM.
 Proc. Natl. Acad. Sci. U.S.A. 107 , 11501–11506 (2010).
 doi:10.1073/pnas.1001613107; pmid: 20534551
- S. R. S. Gottesmanet al., Tyrosine Phosphorylation of
 p27Kip1 Correlates with Palbociclib Responsiveness in Breast
 Cancer Tumor Cells Grown in Explant Culture.
 Mol. Cancer Res. 17 , 669–675 (2019). doi:10.1158/
 1541-7786.MCR-18-0188; pmid: 30559257
- E. Raspéet al., CDK4 phosphorylation status and a linked
 gene expression profile predict sensitivity to palbociclib.
 EMBO Mol. Med. 9 , 1052–1066 (2017). doi:10.15252/
 emmm.201607084; pmid: 28566333
- R. S. Finnet al., The cyclin-dependent kinase 4/6 inhibitor
 palbociclib in combination with letrozole versus letrozole
 alone as first-line treatment of oestrogen receptor-positive,
 HER2-negative, advanced breast cancer (PALOMA-1/
 TRIO-18): A randomised phase 2 study.Lancet Oncol. 16 ,
 25 – 35 (2015). doi:10.1016/S1470-2045(14)71159-3;
 pmid: 25524798
- R. S. Finnet al., Biomarker Analyses of Response to
 Cyclin-Dependent Kinase 4/6 Inhibition and Endocrine
 Therapy in Women with Treatment-Naïve Metastatic Breast
 Cancer.Clin. Cancer Res. 26 , 110–121 (2020). doi:10.1158/
 1078-0432.CCR-19-0751; pmid: 31527167
- N. C. Turneret al., Cyclin E1 Expression and Palbociclib
 Efficacy in Previously Treated Hormone Receptor-Positive
 Metastatic Breast Cancer.J. Clin. Oncol. 37 , 1169– 1178
 (2019). doi:10.1200/JCO.18.00925; pmid: 30807234
- Z. Liet al., Loss of the FAT1 Tumor Suppressor Promotes
 Resistance to CDK4/6 Inhibitors via the Hippo Pathway.
 Cancer Cell 34 , 893–905.e8 (2018). doi:10.1016/
 j.ccell.2018.11.006; pmid: 30537512
- M. Cheng, V. Sexl, C. J. Sherr, M. F. Roussel, Assembly of
 cyclin D-dependent kinase and titration of p27Kip1 regulated
 by mitogen-activated protein kinase kinase (MEK1).
 Proc. Natl. Acad. Sci. U.S.A. 95 , 1091–1096 (1998).
 doi:10.1073/pnas.95.3.1091; pmid: 9448290
- E. A. Klein, R. K. Assoian, Transcriptional regulation of the
 cyclin D1 gene at a glance.J. Cell Sci. 121 , 3853– 3857
 (2008). doi:10.1242/jcs.039131; pmid: 19020303
- J. N. Lavoie, G. L’Allemain, A. Brunet, R. Müller, J. Pouysségur,
 Cyclin D1 expression is regulated positively by the p42/
 p44MAPK and negatively by the p38/HOGMAPK pathway.
 J. Biol. Chem. 271 , 20608–20616 (1996). doi:10.1074/
 jbc.271.34.20608; pmid: 8702807
- J. Lukas, J. Bartkova, J. Bartek, Convergence of mitogenic
 signalling cascades from diverse classes of receptors at the
 cyclin D-cyclin-dependent kinase-pRb-controlled G1
 checkpoint.Mol. Cell. Biol. 16 , 6917–6925 (1996).
 doi:10.1128/MCB.16.12.6917; pmid: 8943347
- R. C. Muise-Helmerickset al., Cyclin D expression is
 controlled post-transcriptionally via a phosphatidylinositol
 3-kinase/Akt-dependent pathway.J. Biol. Chem. 273 ,
 29864 – 29872 (1998). doi:10.1074/jbc.273.45.29864;
 pmid: 9792703
- M. Peket al., Oncogenic KRAS-associated gene signature
 defines co-targeting of CDK4/6 and MEK as a viable
 therapeutic strategy in colorectal cancer.Oncogene 36 ,
 4975 – 4986 (2017). doi:10.1038/onc.2017.120;
 pmid: 28459468
- S. R. Voraet al., CDK 4/6 inhibitors sensitize PIK3CA mutant
 breast cancer to PI3K inhibitors.Cancer Cell 26 , 136– 149
 (2014). doi:10.1016/j.ccr.2014.05.020; pmid: 25002028
- C. A. Martinet al., Palbociclib synergizes with BRAF and
 MEK inhibitors in treatment naïve melanoma but not after
 the development of BRAF inhibitor resistance.Int. J.
 Cancer 142 , 2139–2152 (2018). doi:10.1002/ijc.31220;
 pmid: 29243224
- J. L. F. Tehet al.,In VivoE2F Reporting Reveals Efficacious
 Schedules of MEK1/2-CDK4/6 Targeting and mTOR-S6
 Resistance Mechanisms.Cancer Discov. 8 , 568–581 (2018).
 doi:10.1158/2159-8290.CD-17-0699; pmid: 29496664
- A. Dall’Acquaet al., CDK6 protects epithelial ovarian cancer
 from platinum-induced death via FOXO3 regulation.
 EMBO Mol. Med. 9 , 1415–1433 (2017). doi:10.15252/
 emmm.201607012; pmid: 28778953
 92. H. Gaoet al., High-throughput screening using patient-
 derived tumor xenografts to predict clinical trial drug
 response.Nat. Med. 21 , 1318–1325 (2015). doi:10.1038/
 nm.3954; pmid: 26479923
 93. V. Yadavet al., The CDK4/6 inhibitor LY2835219 overcomes
 vemurafenib resistance resulting from MAPK reactivation
 and cyclin D1 upregulation.Mol. Cancer Ther. 13 , 2253– 2263
 (2014). doi:10.1158/1535-7163.MCT-14-0257;
 pmid: 25122067
 94. A. C. Woodet al., DualALKandCDK4/6Inhibition
 Demonstrates Synergy against Neuroblastoma.Clin. Cancer
 Res. 23 , 2856–2868 (2017). doi:10.1158/1078-0432.CCR-16-
 1114 ; pmid: 27986745
 95. S. Goelet al., Overcoming Therapeutic Resistance in
 HER2-Positive Breast Cancers with CDK4/6 Inhibitors.
 Cancer Cell 29 , 255–269 (2016). doi:10.1016/
 j.ccell.2016.02.006; pmid: 26977878
 96. J. L. Dean, A. K. McClendon, E. S. Knudsen, Modification of
 the DNA damage response by therapeutic CDK4/6 inhibition.
 J. Biol. Chem. 287 , 29075–29087 (2012). doi:10.1074/
 jbc.M112.365494; pmid: 22733811
 97. Y. Pikmanet al., Synergistic Drug Combinations with a
 CDK4/6 Inhibitor in T-cell Acute Lymphoblastic Leukemia.
 Clin. Cancer Res. 23 , 1012–1024 (2017). doi:10.1158/
 1078-0432.CCR-15-2869; pmid: 28151717
 98. J. Caoet al., Combining CDK4/6 inhibition with taxanes
 enhances anti-tumor efficacy by sustained impairment of
 pRB-E2F pathways in squamous cell lung cancer.Oncogene
 38 , 4125–4141 (2019). doi:10.1038/s41388-019-0708-7;
 pmid: 30700828
 99. Y. Gaoet al., Inhibition of CDK4 sensitizes multidrug resistant
 ovarian cancer cells to paclitaxel by increasing apoptosiss.
 Cell Oncol. 40 , 209–218 (2017). doi:10.1007/
 s13402-017-0316-x; pmid: 28243976
 100. B. Salvador-Barberoet al., CDK4/6 Inhibitors Impair
 Recovery from Cytotoxic Chemotherapy in Pancreatic
 Adenocarcinoma.Cancer Cell 37 , 340–353.e6 (2020).
 doi:10.1016/j.ccell.2020.01.007; pmid: 32109375
 101. J. Yiet al., MYC status as a determinant of synergistic
 response to Olaparib and Palbociclib in ovarian cancer.
 EBioMedicine 43 , 225–237 (2019). doi:10.1016/
 j.ebiom.2019.03.027; pmid: 30898650
 102. D. Tempkaet al., Downregulation of PARP1 transcription by
 CDK4/6 inhibitors sensitizes human lung cancer cells to
 anticancer drug-induced death by impairing OGG1-dependent
 base excision repair.Redox Biol. 15 , 316–326 (2018).
 doi:10.1016/j.redox.2017.12.017; pmid: 29306194
 103. S. M. Johnsonet al., Mitigation of hematologic radiation
 toxicity in mice through pharmacological quiescence induced
 by CDK4/6 inhibition.J. Clin. Invest. 120 , 2528–2536 (2010).
 doi:10.1172/JCI41402; pmid: 20577054
 104. S. Heet al., Transient CDK4/6 inhibition protects
 hematopoietic stem cells from chemotherapy-induced
 exhaustion.Sci. Transl. Med. 9 , eaal3986 (2017).
 doi:10.1126/scitranslmed.aal3986; pmid: 28446688
 105. J. M. Weisset al., Myelopreservation with the CDK4/6
 inhibitor trilaciclib in patients with small-cell lung cancer
 receiving first-line chemotherapy: A phase Ib/randomized
 phase II trial.Ann. Oncol. 30 , 1613–1621 (2019). doi:10.1093/
 annonc/mdz278; pmid: 31504118
 106. A. R. Tanet al., Trilaciclib plus chemotherapy versus
 chemotherapy alone in patients with metastatic triple-
 negative breast cancer: A multicentre, randomised,
 open-label, phase 2 trial.Lancet Oncol. 20 , 1587– 1601
 (2019). doi:10.1016/S1470-2045(19)30616-3;
 pmid: 31575503
 107. J. O’Shaughnessyet al.,“Trilaciclib improves overall survival
 when given with gemcitabine/carboplatin in patients with
 metastatic triple-negative breast cancer.”Paper presented at
 the 2020 San Antonio Breast Cancer Symposium, abstract
 PD1-06 (2020).
 108. J. Franco, U. Balaji, E. Freinkman, A. K. Witkiewicz,
 E. S. Knudsen, Metabolic Reprogramming of Pancreatic
 Cancer Mediated by CDK4/6 Inhibition Elicits Unique
 Vulnerabilities.Cell Rep. 14 , 979–990 (2016). doi:10.1016/
 j.celrep.2015.12.094; pmid: 26804906
 109. Q. Yinet al., CDK4/6 regulate lysosome biogenesis through
 TFEB/TFE3.J. Cell Biol. 219 , e201911036 (2020).
 doi:10.1083/jcb.201911036; pmid: 32662822
 110. L. Martínez-Carrereset al., CDK4 Regulates Lysosomal
 Function and mTORC1 Activation to Promote Cancer Cell
 Survival.Cancer Res. 79 , 5245–5259 (2019). doi:10.1158/
 0008-5472.CAN-19-0708; pmid: 31395606
Fasslet al.,Science 375 , eabc1495 (2022) 14 January 2022 18 of 19
RESEARCH | REVIEW
