- A. Fasslet al., Increased lysosomal biomass is responsible for
 the resistance of triple-negative breast cancers to CDK4/6
 inhibition.Sci. Adv. 6 , eabb2210 (2020). doi:10.1126/sciadv.
 abb2210; pmid: 32704543
- H. Wanget al., The metabolic function of cyclin D3-CDK6
 kinase in cancer cell survival.Nature 546 , 426–430 (2017).
 doi:10.1038/nature22797; pmid: 28607489
- C. Luoet al., Obesity/Type 2 Diabetes-Associated Liver
 Tumors Are Sensitive to Cyclin D1 Deficiency.Cancer Res. 80 ,
 3215 – 3221 (2020). doi:10.1158/0008-5472.CAN-20-0106;
 pmid: 32606000
- S. Goelet al., CDK4/6 inhibition triggers anti-tumour
 immunity.Nature 548 , 471–475 (2017). doi:10.1038/
 nature23465; pmid: 28813415
- J. Denget al., CDK4/6 Inhibition Augments Antitumor
 Immunity by Enhancing T-cell Activation.Cancer Discov. 8 ,
 216 – 233 (2018). doi:10.1158/2159-8290.CD-17-0915;
 pmid: 29101163
- D. A. Schaeret al., The CDK4/6 Inhibitor Abemaciclib
 Induces a T Cell Inflamed Tumor Microenvironment and
 Enhances the Efficacy of PD-L1 Checkpoint Blockade.
 Cell Rep. 22 , 2978–2994 (2018). doi:10.1016/j.
 celrep.2018.02.053; pmid: 29539425
- J. Yuet al., Genetic Aberrations in the CDK4 Pathway Are
 Associated with Innate Resistance to PD-1 Blockade in
 Chinese Patients with Non-Cutaneous Melanoma.
 Clin. Cancer Res. 25 , 6511–6523 (2019). doi:10.1158/
 1078-0432.CCR-19-0475; pmid: 31375512
- J. Zhanget al., Cyclin D-CDK4 kinase destabilizes PD-L1
 via cullin 3-SPOP to control cancer immune surveillance.
 Nature 553 , 91–95 (2018). doi:10.1038/nature25015;
 pmid: 29160310
- X. Jinet al., Phosphorylated RB Promotes Cancer Immunity
 by Inhibiting NF-kB Activation and PD-L1 Expression.
 Mol. Cell 73 , 22–35.e6 (2019). doi:10.1016/
 j.molcel.2018.10.034; pmid: 30527665
- L. Jerby-Arnonet al., A Cancer Cell Program Promotes T Cell
 Exclusion and Resistance to Checkpoint Blockade.Cell 175 ,
 984 – 997.e24 (2018). doi:10.1016/j.cell.2018.09.006;
 pmid: 30388455
- Z. L. Teoet al., Combined CDK4/6 and PI3KaInhibition Is
 Synergistic and Immunogenic in Triple-Negative Breast
 Cancer.Cancer Res. 77 , 6340–6352 (2017). doi:10.1158/
 0008-5472.CAN-17-2210; pmid: 28947417
- R. S. Finnet al., Palbociclib and Letrozole in Advanced Breast
 Cancer.N. Engl. J. Med. 375 , 1925–1936 (2016).
 doi:10.1056/NEJMoa1607303; pmid: 27959613
- N. C. Turneret al., Palbociclib in Hormone-Receptor-Positive
 Advanced Breast Cancer.N. Engl. J. Med. 373 , 209– 219
 (2015). doi:10.1056/NEJMoa1505270; pmid: 26030518
- M. Cristofanilliet al., Fulvestrant plus palbociclib versus
 fulvestrant plus placebo for treatment of hormone-receptor-
 positive, HER2-negative metastatic breast cancer that
 progressed on previous endocrine therapy (PALOMA-3):
 Final analysis of the multicentre, double-blind, phase 3
 randomised controlled trial.Lancet Oncol. 17 , 425– 439
 (2016). doi:10.1016/S1470-2045(15)00613-0;
 pmid: 26947331
- G. N. Hortobagyiet al., Ribociclib as First-Line Therapy for
 HR-Positive, Advanced Breast Cancer.N. Engl. J. Med.
 375 , 1738–1748 (2016). doi:10.1056/NEJMoa1609709;
 pmid: 27717303
- D. J. Slamonet al., Phase III Randomized Study of Ribociclib
 and Fulvestrant in Hormone Receptor-Positive, Human
 Epidermal Growth Factor Receptor 2-Negative Advanced
 Breast Cancer: MONALEESA-3.J. Clin. Oncol. 36 , 2465– 2472
 (2018). doi:10.1200/JCO.2018.78.9909; pmid: 29860922
- D. Tripathyet al., Ribociclib plus endocrine therapy for
 premenopausal women with hormone-receptor-positive,
 advanced breast cancer (MONALEESA-7): A randomised
 phase 3 trial.Lancet Oncol. 19 , 904–915 (2018). doi:10.1016/
 S1470-2045(18)30292-4; pmid: 29804902
- G. W. Sledge Jret al., MONARCH 2: Abemaciclib in
 Combination With Fulvestrant in Women With HR+/HER2-
 Advanced Breast Cancer Who Had Progressed While
 Receiving Endocrine Therapy.J. Clin. Oncol. 35 , 2875– 2884
 (2017). doi:10.1200/JCO.2017.73.7585; pmid: 28580882
- M. P. Goetzet al., MONARCH 3: Abemaciclib As Initial
 Therapy for Advanced Breast Cancer.J. Clin. Oncol. 35 ,
 3638 – 3646 (2017). doi:10.1200/JCO.2017.75.6155;
 pmid: 28968163
- S. Johnstonet al., MONARCH 3 final PFS: A randomized
 study of abemaciclib as initial therapy for advanced breast
cancer.NPJ Breast Cancer 5 , 5 (2019). doi:10.1038/
s41523-018-0097-z; pmid: 30675515- S. A. Imet al., Overall Survival with Ribociclib plus
 Endocrine Therapy in Breast Cancer.N.Engl.J.Med. 381 ,
 307 – 316 (2019). doi:10.1056/NEJMoa1903765;
 pmid: 31166679
- D. J. Slamonet al., Overall Survival with Ribociclib plus
 Fulvestrant in Advanced Breast Cancer.N. Engl. J. Med. 382 ,
 514 – 524 (2020). doi:10.1056/NEJMoa1911149;
 pmid: 31826360
- G. W. Sledge Jret al., The Effect of Abemaciclib Plus
 Fulvestrant on Overall Survival in Hormone Receptor-Positive,
 ERBB2-Negative Breast Cancer That Progressed on
 Endocrine Therapy-MONARCH 2: A Randomized Clinical Trial.
 JAMA Oncol. 6 , 116–124 (2020). pmid: 31563959
- N. C. Turneret al., Overall Survival with Palbociclib and
 Fulvestrant in Advanced Breast Cancer.N. Engl. J. Med. 379 ,
 1926 – 1936 (2018). doi:10.1056/NEJMoa1810527;
 pmid: 30345905
- M. N. Dickleret al., MONARCH 1, A Phase II Study of
 Abemaciclib, a CDK4 and CDK6 Inhibitor, as a Single Agent,
 in Patients with Refractory HR+/HER2–Metastatic Breast
 Cancer.Clin. Cancer Res. 23 , 5218–5224 (2017). doi:10.1158/
 1078-0432.CCR-17-0754; pmid: 28533223
- S. R. D. Johnstonet al., Abemaciclib Combined With
 Endocrine Therapy for the Adjuvant Treatment of HR+, HER2-,
 Node-Positive, High-Risk, Early Breast Cancer (monarchE).
 J. Clin. Oncol. 38 , 3987–3998 (2020). doi:10.1200/
 JCO.20.02514; pmid: 32954927
- E. L. Mayeret al., LBA12 - PALLAS: A randomized phase III
 trial of adjuvant palbociclib with endocrine therapy versus
 endocrine therapy alone for HR+/HER2- early breast
 cancer.Ann. Oncol. 31 (suppl. 4), S1142–S1215 (2020).
 doi:10.1016/j.annonc.2020.08.2240
- S. Pernas, S. M. Tolaney, E. P. Winer, S. Goel, CDK4/6
 inhibition in breast cancer: Current practice and future
 directions.Ther. Adv. Med. Oncol. 10 , 1758835918786451
 (2018). doi:10.1177/1758835918786451; pmid: 30038670
 139.www.clinicaltrials.gov/.
- J. L. Deanet al., Therapeutic response to CDK4/6 inhibition
 in breast cancer defined by ex vivo analyses of human
 tumors.Cell Cycle 11 , 2756–2761 (2012). doi:10.4161/
 cc.21195; pmid: 22767154
- M. T. Herrera-Abreuet al., Early Adaptation and
 Acquired Resistance to CDK4/6 Inhibition in Estrogen
 Receptor-Positive Breast Cancer.Cancer Res. 76 ,
 2301 – 2313 (2016). doi:10.1158/0008-5472.CAN-15-0728;
 pmid: 27020857
- R. Condorelliet al., Polyclonal RB1 mutations and acquired
 resistance to CDK 4/6 inhibitors in patients with metastatic
 breast cancer.Ann. Oncol. 29 , 640–645 (2018). doi:10.1093/
 annonc/mdx784; pmid: 29236940
- B. O’Learyet al., The Genetic Landscape and Clonal
 Evolution of Breast Cancer Resistance to Palbociclib plus
 Fulvestrant in the PALOMA-3 Trial.Cancer Discov. 8 ,
 1390 – 1403 (2018). doi:10.1158/2159-8290.CD-18-0264;
 pmid: 30206110
- C. Costaet al., PTEN Loss Mediates Clinical Cross-Resistance
 to CDK4/6 and PI3KaInhibitors in Breast Cancer.
 Cancer Discov. 10 , 72–85 (2020). doi:10.1158/
 2159-8290.CD-18-0830; pmid: 31594766
- S. A. Wanderet al., The Genomic Landscape of Intrinsic and
 Acquired Resistance to Cyclin-Dependent Kinase 4/6
 Inhibitors in Patients with Hormone Receptor-Positive
 Metastatic Breast Cancer.Cancer Discov. 10 , 1174– 1193
 (2020). doi:10.1158/2159-8290.CD-19-1390;
 pmid: 32404308
- C. Yanget al., Acquired CDK6 amplification promotes breast
 cancer resistance to CDK4/6 inhibitors and loss of ER
 signaling and dependence.Oncogene 36 , 2255–2264 (2017).
 doi:10.1038/onc.2016.379; pmid: 27748766
- L. Formisanoet al., Aberrant FGFR signaling mediates
 resistance to CDK4/6 inhibitors in ER+ breast cancer.
 Nat. Commun. 10 , 1373 (2019). doi:10.1038/
 s41467-019-09068-2; pmid: 30914635
- M. Álvarez-Fernández, M. Malumbres, Mechanisms of
 Sensitivity and Resistance to CDK4/6 Inhibition.Cancer Cell
 37 , 514–529 (2020). doi:10.1016/j.ccell.2020.03.010;
 pmid: 32289274
- L. Cenet al., p16-Cdk4-Rb axis controls sensitivity to a cyclin-
 dependent kinase inhibitor PD0332991 in glioblastoma
 xenograft cells.Neuro-oncol. 14 , 870–881 (2012).
 doi:10.1093/neuonc/nos114; pmid: 22711607
 150. M. E. Olanichet al., CDK4 Amplification Reduces Sensitivity
 to CDK4/6 Inhibition in Fusion-Positive Rhabdomyosarcoma.
 Clin. Cancer Res. 21 , 4947–4959 (2015). doi:10.1158/
 1078-0432.CCR-14-2955; pmid: 25810375
 151. L. Cornell, S. A. Wander, T. Visal, N. Wagle, G. I. Shapiro,
 MicroRNA-Mediated Suppression of the TGF-bPathway Confers
 Transmissible and Reversible CDK4/6 Inhibitor Resistance.
 Cell Rep. 26 , 2667–2680.e7 (2019). doi:10.1016/
 j.celrep.2019.02.023; pmid: 30840889
 152. R. de Leeuwet al., MAPK Reliance via Acquired CDK4/6 Inhibitor
 Resistance in Cancer.Clin. Cancer Res. 24 , 4201–4214 (2018).
 doi:10.1158/1078-0432.CCR-18-0410; pmid: 29739788
 153. E. Haineset al., Palbociclib resistance confers dependence
 on an FGFR-MAP kinase-mTOR-driven pathway inKRAS-mutant
 non-small cell lung cancer.Oncotarget 9 , 31572– 31589
 (2018). doi:10.18632/oncotarget.25803; pmid: 30167080
 154. G. Romanoet al., A Preexisting RarePIK3CAE545K
 Subpopulation Confers Clinical Resistance to MEK plus
 CDK4/6 Inhibition inNRASMelanoma and Is Dependent on
 S6K1 Signaling.Cancer Discov. 8 , 556–567 (2018).
 doi:10.1158/2159-8290.CD-17-0745; pmid: 29496665
 155. D. B. Bowe, N. J. Kenney, Y. Adereth, I. G. Maroulakou,
 Suppression of Neu-induced mammary tumor growth in
 cyclin D1 deficient mice is compensated for by cyclin E.
 Oncogene 21 , 291–298 (2002). doi:10.1038/sj.onc.1205025;
 pmid: 11803472
 156. Y. Genget al., Rescue of cyclin D1 deficiency by knockin
 cyclin E.Cell 97 , 767–777 (1999). doi:10.1016/S0092-8674
 (00)80788-6; pmid: 10380928
 157. L. Wanget al., Pharmacologic inhibition of CDK4/6:
 Mechanistic evidence for selective activity or acquired
 resistance in acute myeloid leukemia.Blood 110 , 2075– 2083
 (2007). doi:10.1182/blood-2007-02-071266; pmid: 17537993
 158. A. E. Vilgelmet al., MDM2 antagonists overcome intrinsic
 resistance to CDK4/6 inhibition by inducing p21.Sci. Transl. Med.
 11 , eaav7171 (2019). doi:10.1126/scitranslmed.aav7171;
 pmid: 31413145
 159. E. S. Knudsenet al., Cell cycle plasticity driven by MTOR
 signaling: Integral resistance to CDK4/6 inhibition in
 patient-derived models of pancreatic cancer.Oncogene 38 ,
 3355 – 3370 (2019). doi:10.1038/s41388-018-0650-0;
 pmid: 30696953
 160. V. M. Jansenet al., Kinome-Wide RNA Interference Screen
 Reveals a Role for PDK1 in Acquired Resistance to CDK4/6
 Inhibition in ER-Positive Breast Cancer.Cancer Res. 77 ,
 2488 – 2499 (2017). doi:10.1158/0008-5472.CAN-16-2653;
 pmid: 28249908
 161. A. Yoshidaet al., SLC36A1-mTORC1 signaling drives acquired
 resistance to CDK4/6 inhibitors.Sci. Adv. 5 , eaax6352 (2019).
 doi:10.1126/sciadv.aax6352; pmid: 31555743
 162. J. I. Griffithset al., Convergent evolution of resistance
 pathways during early stage breast cancer treatment with
 combination cell cycle (CDK) and endocrine inhibitors.
 Cancer Res. 81 (suppl. 4), SP012 (2021). doi:10.1101/
 2021.01.19.427299
 163. R. L. Hoffman,“The discovery of PF-07104091: A CDK2 selective
 inhibitor for the treatment of cyclinE amplified cancers.”
 Paper presented at the AACR Annual Meeting 2021, Session
 DDT02—New Drugs on the Horizon: Part 3 (2021).
 164. Y. J. Choiet al., Development of a selective CDK2-E inhibitor
 in CCNE driven cancers.Cancer Res. 81 (suppl. 13), 1279
 (2021). doi:10.1158/1538-7445.AM2021-1279
 165. K. Freeman-Cooket al., Expanding control of the tumor
 cell cycle with a CDK2/4/6 inhibitor.Cancer Cell 39 , 1404–1421.
 e11 (2021). doi:10.1016/j.ccell.2021.08.009; pmid: 34520734
 166. P. Hydbring, M. Malumbres, P. Sicinski, Non-canonical
 functions of cell cycle cyclins and cyclin-dependent kinases.
 Nat. Rev. Mol. Cell Biol. 17 , 280–292 (2016). doi:10.1038/
 nrm.2016.27; pmid: 27033256
ACKNOWLEDGMENTS
We thank L. Bury for help with the illustrations.Funding:
Supported by a Claudia Adams Barr Program for Innovative
Basic Cancer Research Award (A.F.), NIH grant R50CA243769
(Y.G.), and NIH grants R01CA202634, CA236226, P50CA168504,
and P01CA250959 (P.S.).Competing interests:P.S. has been
a consultant at Novartis, Genovis, Guidepoint, The Planning
Shop, ORIC Pharmaceuticals, Cedilla Therapeutics, Syros
Pharmaceuticals, and Exo Therapeutics; his laboratory receives
funding from Novartis.10.1126/science.abc1495Fasslet al.,Science 375 , eabc1495 (2022) 14 January 2022 19 of 19
RESEARCH | REVIEW
