Science - USA (2022-01-14)

(Antfer) #1

  1. A. Fasslet al., Increased lysosomal biomass is responsible for
    the resistance of triple-negative breast cancers to CDK4/6
    inhibition.Sci. Adv. 6 , eabb2210 (2020). doi:10.1126/sciadv.
    abb2210; pmid: 32704543

  2. H. Wanget al., The metabolic function of cyclin D3-CDK6
    kinase in cancer cell survival.Nature 546 , 426–430 (2017).
    doi:10.1038/nature22797; pmid: 28607489

  3. C. Luoet al., Obesity/Type 2 Diabetes-Associated Liver
    Tumors Are Sensitive to Cyclin D1 Deficiency.Cancer Res. 80 ,
    3215 – 3221 (2020). doi:10.1158/0008-5472.CAN-20-0106;
    pmid: 32606000

  4. S. Goelet al., CDK4/6 inhibition triggers anti-tumour
    immunity.Nature 548 , 471–475 (2017). doi:10.1038/
    nature23465; pmid: 28813415

  5. J. Denget al., CDK4/6 Inhibition Augments Antitumor
    Immunity by Enhancing T-cell Activation.Cancer Discov. 8 ,
    216 – 233 (2018). doi:10.1158/2159-8290.CD-17-0915;
    pmid: 29101163

  6. D. A. Schaeret al., The CDK4/6 Inhibitor Abemaciclib
    Induces a T Cell Inflamed Tumor Microenvironment and
    Enhances the Efficacy of PD-L1 Checkpoint Blockade.
    Cell Rep. 22 , 2978–2994 (2018). doi:10.1016/j.
    celrep.2018.02.053; pmid: 29539425

  7. J. Yuet al., Genetic Aberrations in the CDK4 Pathway Are
    Associated with Innate Resistance to PD-1 Blockade in
    Chinese Patients with Non-Cutaneous Melanoma.
    Clin. Cancer Res. 25 , 6511–6523 (2019). doi:10.1158/
    1078-0432.CCR-19-0475; pmid: 31375512

  8. J. Zhanget al., Cyclin D-CDK4 kinase destabilizes PD-L1
    via cullin 3-SPOP to control cancer immune surveillance.
    Nature 553 , 91–95 (2018). doi:10.1038/nature25015;
    pmid: 29160310

  9. X. Jinet al., Phosphorylated RB Promotes Cancer Immunity
    by Inhibiting NF-kB Activation and PD-L1 Expression.
    Mol. Cell 73 , 22–35.e6 (2019). doi:10.1016/
    j.molcel.2018.10.034; pmid: 30527665

  10. L. Jerby-Arnonet al., A Cancer Cell Program Promotes T Cell
    Exclusion and Resistance to Checkpoint Blockade.Cell 175 ,
    984 – 997.e24 (2018). doi:10.1016/j.cell.2018.09.006;
    pmid: 30388455

  11. Z. L. Teoet al., Combined CDK4/6 and PI3KaInhibition Is
    Synergistic and Immunogenic in Triple-Negative Breast
    Cancer.Cancer Res. 77 , 6340–6352 (2017). doi:10.1158/
    0008-5472.CAN-17-2210; pmid: 28947417

  12. R. S. Finnet al., Palbociclib and Letrozole in Advanced Breast
    Cancer.N. Engl. J. Med. 375 , 1925–1936 (2016).
    doi:10.1056/NEJMoa1607303; pmid: 27959613

  13. N. C. Turneret al., Palbociclib in Hormone-Receptor-Positive
    Advanced Breast Cancer.N. Engl. J. Med. 373 , 209– 219
    (2015). doi:10.1056/NEJMoa1505270; pmid: 26030518

  14. M. Cristofanilliet al., Fulvestrant plus palbociclib versus
    fulvestrant plus placebo for treatment of hormone-receptor-
    positive, HER2-negative metastatic breast cancer that
    progressed on previous endocrine therapy (PALOMA-3):
    Final analysis of the multicentre, double-blind, phase 3
    randomised controlled trial.Lancet Oncol. 17 , 425– 439
    (2016). doi:10.1016/S1470-2045(15)00613-0;
    pmid: 26947331

  15. G. N. Hortobagyiet al., Ribociclib as First-Line Therapy for
    HR-Positive, Advanced Breast Cancer.N. Engl. J. Med.
    375 , 1738–1748 (2016). doi:10.1056/NEJMoa1609709;
    pmid: 27717303

  16. D. J. Slamonet al., Phase III Randomized Study of Ribociclib
    and Fulvestrant in Hormone Receptor-Positive, Human
    Epidermal Growth Factor Receptor 2-Negative Advanced
    Breast Cancer: MONALEESA-3.J. Clin. Oncol. 36 , 2465– 2472
    (2018). doi:10.1200/JCO.2018.78.9909; pmid: 29860922

  17. D. Tripathyet al., Ribociclib plus endocrine therapy for
    premenopausal women with hormone-receptor-positive,
    advanced breast cancer (MONALEESA-7): A randomised
    phase 3 trial.Lancet Oncol. 19 , 904–915 (2018). doi:10.1016/
    S1470-2045(18)30292-4; pmid: 29804902

  18. G. W. Sledge Jret al., MONARCH 2: Abemaciclib in
    Combination With Fulvestrant in Women With HR+/HER2-
    Advanced Breast Cancer Who Had Progressed While
    Receiving Endocrine Therapy.J. Clin. Oncol. 35 , 2875– 2884
    (2017). doi:10.1200/JCO.2017.73.7585; pmid: 28580882

  19. M. P. Goetzet al., MONARCH 3: Abemaciclib As Initial
    Therapy for Advanced Breast Cancer.J. Clin. Oncol. 35 ,
    3638 – 3646 (2017). doi:10.1200/JCO.2017.75.6155;
    pmid: 28968163

  20. S. Johnstonet al., MONARCH 3 final PFS: A randomized
    study of abemaciclib as initial therapy for advanced breast


cancer.NPJ Breast Cancer 5 , 5 (2019). doi:10.1038/
s41523-018-0097-z; pmid: 30675515


  1. S. A. Imet al., Overall Survival with Ribociclib plus
    Endocrine Therapy in Breast Cancer.N.Engl.J.Med. 381 ,
    307 – 316 (2019). doi:10.1056/NEJMoa1903765;
    pmid: 31166679

  2. D. J. Slamonet al., Overall Survival with Ribociclib plus
    Fulvestrant in Advanced Breast Cancer.N. Engl. J. Med. 382 ,
    514 – 524 (2020). doi:10.1056/NEJMoa1911149;
    pmid: 31826360

  3. G. W. Sledge Jret al., The Effect of Abemaciclib Plus
    Fulvestrant on Overall Survival in Hormone Receptor-Positive,
    ERBB2-Negative Breast Cancer That Progressed on
    Endocrine Therapy-MONARCH 2: A Randomized Clinical Trial.
    JAMA Oncol. 6 , 116–124 (2020). pmid: 31563959

  4. N. C. Turneret al., Overall Survival with Palbociclib and
    Fulvestrant in Advanced Breast Cancer.N. Engl. J. Med. 379 ,
    1926 – 1936 (2018). doi:10.1056/NEJMoa1810527;
    pmid: 30345905

  5. M. N. Dickleret al., MONARCH 1, A Phase II Study of
    Abemaciclib, a CDK4 and CDK6 Inhibitor, as a Single Agent,
    in Patients with Refractory HR+/HER2–Metastatic Breast
    Cancer.Clin. Cancer Res. 23 , 5218–5224 (2017). doi:10.1158/
    1078-0432.CCR-17-0754; pmid: 28533223

  6. S. R. D. Johnstonet al., Abemaciclib Combined With
    Endocrine Therapy for the Adjuvant Treatment of HR+, HER2-,
    Node-Positive, High-Risk, Early Breast Cancer (monarchE).
    J. Clin. Oncol. 38 , 3987–3998 (2020). doi:10.1200/
    JCO.20.02514; pmid: 32954927

  7. E. L. Mayeret al., LBA12 - PALLAS: A randomized phase III
    trial of adjuvant palbociclib with endocrine therapy versus
    endocrine therapy alone for HR+/HER2- early breast
    cancer.Ann. Oncol. 31 (suppl. 4), S1142–S1215 (2020).
    doi:10.1016/j.annonc.2020.08.2240

  8. S. Pernas, S. M. Tolaney, E. P. Winer, S. Goel, CDK4/6
    inhibition in breast cancer: Current practice and future
    directions.Ther. Adv. Med. Oncol. 10 , 1758835918786451
    (2018). doi:10.1177/1758835918786451; pmid: 30038670
    139.www.clinicaltrials.gov/.

  9. J. L. Deanet al., Therapeutic response to CDK4/6 inhibition
    in breast cancer defined by ex vivo analyses of human
    tumors.Cell Cycle 11 , 2756–2761 (2012). doi:10.4161/
    cc.21195; pmid: 22767154

  10. M. T. Herrera-Abreuet al., Early Adaptation and
    Acquired Resistance to CDK4/6 Inhibition in Estrogen
    Receptor-Positive Breast Cancer.Cancer Res. 76 ,
    2301 – 2313 (2016). doi:10.1158/0008-5472.CAN-15-0728;
    pmid: 27020857

  11. R. Condorelliet al., Polyclonal RB1 mutations and acquired
    resistance to CDK 4/6 inhibitors in patients with metastatic
    breast cancer.Ann. Oncol. 29 , 640–645 (2018). doi:10.1093/
    annonc/mdx784; pmid: 29236940

  12. B. O’Learyet al., The Genetic Landscape and Clonal
    Evolution of Breast Cancer Resistance to Palbociclib plus
    Fulvestrant in the PALOMA-3 Trial.Cancer Discov. 8 ,
    1390 – 1403 (2018). doi:10.1158/2159-8290.CD-18-0264;
    pmid: 30206110

  13. C. Costaet al., PTEN Loss Mediates Clinical Cross-Resistance
    to CDK4/6 and PI3KaInhibitors in Breast Cancer.
    Cancer Discov. 10 , 72–85 (2020). doi:10.1158/
    2159-8290.CD-18-0830; pmid: 31594766

  14. S. A. Wanderet al., The Genomic Landscape of Intrinsic and
    Acquired Resistance to Cyclin-Dependent Kinase 4/6
    Inhibitors in Patients with Hormone Receptor-Positive
    Metastatic Breast Cancer.Cancer Discov. 10 , 1174– 1193
    (2020). doi:10.1158/2159-8290.CD-19-1390;
    pmid: 32404308

  15. C. Yanget al., Acquired CDK6 amplification promotes breast
    cancer resistance to CDK4/6 inhibitors and loss of ER
    signaling and dependence.Oncogene 36 , 2255–2264 (2017).
    doi:10.1038/onc.2016.379; pmid: 27748766

  16. L. Formisanoet al., Aberrant FGFR signaling mediates
    resistance to CDK4/6 inhibitors in ER+ breast cancer.
    Nat. Commun. 10 , 1373 (2019). doi:10.1038/
    s41467-019-09068-2; pmid: 30914635

  17. M. Álvarez-Fernández, M. Malumbres, Mechanisms of
    Sensitivity and Resistance to CDK4/6 Inhibition.Cancer Cell
    37 , 514–529 (2020). doi:10.1016/j.ccell.2020.03.010;
    pmid: 32289274

  18. L. Cenet al., p16-Cdk4-Rb axis controls sensitivity to a cyclin-
    dependent kinase inhibitor PD0332991 in glioblastoma
    xenograft cells.Neuro-oncol. 14 , 870–881 (2012).
    doi:10.1093/neuonc/nos114; pmid: 22711607
    150. M. E. Olanichet al., CDK4 Amplification Reduces Sensitivity
    to CDK4/6 Inhibition in Fusion-Positive Rhabdomyosarcoma.
    Clin. Cancer Res. 21 , 4947–4959 (2015). doi:10.1158/
    1078-0432.CCR-14-2955; pmid: 25810375
    151. L. Cornell, S. A. Wander, T. Visal, N. Wagle, G. I. Shapiro,
    MicroRNA-Mediated Suppression of the TGF-bPathway Confers
    Transmissible and Reversible CDK4/6 Inhibitor Resistance.
    Cell Rep. 26 , 2667–2680.e7 (2019). doi:10.1016/
    j.celrep.2019.02.023; pmid: 30840889
    152. R. de Leeuwet al., MAPK Reliance via Acquired CDK4/6 Inhibitor
    Resistance in Cancer.Clin. Cancer Res. 24 , 4201–4214 (2018).
    doi:10.1158/1078-0432.CCR-18-0410; pmid: 29739788
    153. E. Haineset al., Palbociclib resistance confers dependence
    on an FGFR-MAP kinase-mTOR-driven pathway inKRAS-mutant
    non-small cell lung cancer.Oncotarget 9 , 31572– 31589
    (2018). doi:10.18632/oncotarget.25803; pmid: 30167080
    154. G. Romanoet al., A Preexisting RarePIK3CAE545K
    Subpopulation Confers Clinical Resistance to MEK plus
    CDK4/6 Inhibition inNRASMelanoma and Is Dependent on
    S6K1 Signaling.Cancer Discov. 8 , 556–567 (2018).
    doi:10.1158/2159-8290.CD-17-0745; pmid: 29496665
    155. D. B. Bowe, N. J. Kenney, Y. Adereth, I. G. Maroulakou,
    Suppression of Neu-induced mammary tumor growth in
    cyclin D1 deficient mice is compensated for by cyclin E.
    Oncogene 21 , 291–298 (2002). doi:10.1038/sj.onc.1205025;
    pmid: 11803472
    156. Y. Genget al., Rescue of cyclin D1 deficiency by knockin
    cyclin E.Cell 97 , 767–777 (1999). doi:10.1016/S0092-8674
    (00)80788-6; pmid: 10380928
    157. L. Wanget al., Pharmacologic inhibition of CDK4/6:
    Mechanistic evidence for selective activity or acquired
    resistance in acute myeloid leukemia.Blood 110 , 2075– 2083
    (2007). doi:10.1182/blood-2007-02-071266; pmid: 17537993
    158. A. E. Vilgelmet al., MDM2 antagonists overcome intrinsic
    resistance to CDK4/6 inhibition by inducing p21.Sci. Transl. Med.
    11 , eaav7171 (2019). doi:10.1126/scitranslmed.aav7171;
    pmid: 31413145
    159. E. S. Knudsenet al., Cell cycle plasticity driven by MTOR
    signaling: Integral resistance to CDK4/6 inhibition in
    patient-derived models of pancreatic cancer.Oncogene 38 ,
    3355 – 3370 (2019). doi:10.1038/s41388-018-0650-0;
    pmid: 30696953
    160. V. M. Jansenet al., Kinome-Wide RNA Interference Screen
    Reveals a Role for PDK1 in Acquired Resistance to CDK4/6
    Inhibition in ER-Positive Breast Cancer.Cancer Res. 77 ,
    2488 – 2499 (2017). doi:10.1158/0008-5472.CAN-16-2653;
    pmid: 28249908
    161. A. Yoshidaet al., SLC36A1-mTORC1 signaling drives acquired
    resistance to CDK4/6 inhibitors.Sci. Adv. 5 , eaax6352 (2019).
    doi:10.1126/sciadv.aax6352; pmid: 31555743
    162. J. I. Griffithset al., Convergent evolution of resistance
    pathways during early stage breast cancer treatment with
    combination cell cycle (CDK) and endocrine inhibitors.
    Cancer Res. 81 (suppl. 4), SP012 (2021). doi:10.1101/
    2021.01.19.427299
    163. R. L. Hoffman,“The discovery of PF-07104091: A CDK2 selective
    inhibitor for the treatment of cyclinE amplified cancers.”
    Paper presented at the AACR Annual Meeting 2021, Session
    DDT02—New Drugs on the Horizon: Part 3 (2021).
    164. Y. J. Choiet al., Development of a selective CDK2-E inhibitor
    in CCNE driven cancers.Cancer Res. 81 (suppl. 13), 1279
    (2021). doi:10.1158/1538-7445.AM2021-1279
    165. K. Freeman-Cooket al., Expanding control of the tumor
    cell cycle with a CDK2/4/6 inhibitor.Cancer Cell 39 , 1404–1421.
    e11 (2021). doi:10.1016/j.ccell.2021.08.009; pmid: 34520734
    166. P. Hydbring, M. Malumbres, P. Sicinski, Non-canonical
    functions of cell cycle cyclins and cyclin-dependent kinases.
    Nat. Rev. Mol. Cell Biol. 17 , 280–292 (2016). doi:10.1038/
    nrm.2016.27; pmid: 27033256


ACKNOWLEDGMENTS
We thank L. Bury for help with the illustrations.Funding:
Supported by a Claudia Adams Barr Program for Innovative
Basic Cancer Research Award (A.F.), NIH grant R50CA243769
(Y.G.), and NIH grants R01CA202634, CA236226, P50CA168504,
and P01CA250959 (P.S.).Competing interests:P.S. has been
a consultant at Novartis, Genovis, Guidepoint, The Planning
Shop, ORIC Pharmaceuticals, Cedilla Therapeutics, Syros
Pharmaceuticals, and Exo Therapeutics; his laboratory receives
funding from Novartis.

10.1126/science.abc1495

Fasslet al.,Science 375 , eabc1495 (2022) 14 January 2022 19 of 19


RESEARCH | REVIEW

Free download pdf