33
PPP PL
Load(1 – 2k)LPxLx(3k – 3k^2 – x^2 )k(3x′ – 3x′^2 – k^2 )k(3 – 4k^2 )ShearMomentElastic curve
(e)xL
(x < k)PLk(1 – k)
2
2 EIPL^3
6 EIPL^3
24 EIPkLPL^3
6 EIL
2L′′
2kL kLR = P R = Px′
(k < x′ < (1 – k))PP
R P PP
PP PPP
aL aL aL aL aL aL(Forn an
even number)(Forn an even number)LoadmaLShearMomentElastic curve
(f)LRW=np(n + 1)(For n an
odd number)PL
8n(n + 2)
n + 1PL
8L
2L
2L
2L
2R = nPa = 1
2 R = nP1
21
n + 1n(n + 2)
n + 1PL^2
24 EI
PL^3 n(n + 2)
384 EI(5n^2 + 10n + 6)
(n + 1)^3
PL (Forn an odd number)
3
384 EI5 n^2 + 10n + 1
n + lm(n – m + 1)
n + 1PL
2cLP/2P/2PL
LoadxPLx(3 – 4x^2 )ShearMomentElastic curve
(d)xLPL^2
16 EI
PL^3
48 EIPL
4PL^3
48 EI1
2L
2L
2
R =^12 P R =^12 Px<^1
2cLFIGURE 2.3 Elastic-curve equations for prismatic beams: (d) Shears, moments, and deflections for a concentrated load at midspan of a simply supported
prismatic beam. (e) Shears, moments, and deflections for two equal concentrated loads on a simply supported prismatic beam. (f) Shears, moments, and deflec-
tions for several equal loads equally spaced on a simply supported prismatic beam. (Continued)