132 MATHEMATICS
If two angles of one triangle are respectively equal to two angles of another
triangle, then the two triangles are similar.
This may be referred to as the AA similarity criterion for two triangles.
You have seen above that if the three angles of one triangle are respectively
equal to the three angles of another triangle, then their corresponding sides are
proportional (i.e., in the same ratio). What about the converse of this statement? Is the
converse true? In other words, if the sides of a triangle are respectively proportional to
the sides of another triangle, is it true that their corresponding angles are equal? Let us
examine it through an activity :
Activity 5 : Draw two triangles ABC and DEF such that AB = 3 cm, BC = 6 cm,
CA = 8 cm, DE = 4.5 cm, EF = 9 cm and FD = 12 cm (see Fig. 6.25).
Fig. 6.25
So, you have :
AB BC CA
DE EF FD