Science - USA (2022-01-21)

(Antfer) #1

  1. W. F. Garcia-Beltranet al., Multiple SARS-CoV-2 variants
    escape neutralization by vaccine-induced humoral immunity.
    Cell 184 , 2523 (2021). doi:10.1016/j.cell.2021.04.006;
    pmid: 33930298

  2. S. A. Clarket al., SARS-CoV-2 evolution in an
    immunocompromised host reveals shared neutralization
    escape mechanisms.Cell 184 , 2605–2617.e18 (2021).
    doi:10.1016/j.cell.2021.03.027; pmid: 33831372

  3. B. Choiet al., Persistence and evolution of SARS-CoV-2 in an
    immunocompromised host.N. Engl. J. Med. 383 , 2291– 2293
    (2020). doi:10.1056/NEJMc2031364; pmid: 33176080

  4. T. N. Starret al., Prospective mapping of viral mutations that
    escape antibodies used to treat COVID-19.Science 371 , 850– 854
    (2021). doi:10.1126/science.abf9302; pmid: 33495308

  5. A. Baumet al., Antibody cocktail to SARS-CoV-2 spike protein
    prevents rapid mutational escape seen with individual
    antibodies.Science 369 , 1014–1018 (2020). doi:10.1126/
    science.abd0831; pmid: 32540904

  6. J. Hansenet al., Studies in humanized mice and convalescent
    humans yield a SARS-CoV-2 antibody cocktail.Science 369 ,
    1010 – 1014 (2020). doi:10.1126/science.abd0827;
    pmid: 32540901

  7. M. Yuanet al., Structural basis of a shared antibody response to
    SARS-CoV-2.Science 369 , 1119–1123 (2020). doi:10.1126/
    science.abd2321; pmid: 32661058

  8. T. F. Rogerset al., Isolation of potent SARS-CoV-2 neutralizing
    antibodies and protection from disease in a small animal
    model.Science 369 , 956–963 (2020). doi:10.1126/science.
    abc7520; pmid: 32540903

  9. R. Shiet al., A human neutralizing antibody targets the
    receptor-binding site of SARS-CoV-2.Nature 584 , 120– 124
    (2020). doi:10.1038/s41586-020-2381-y; pmid: 32454512

  10. E. Seydouxet al., Analysis of a SARS-CoV-2-infected individual
    reveals development of potent neutralizing antibodies with
    limited somatic mutation.Immunity 53 , 98–105.e5 (2020).
    doi:10.1016/j.immuni.2020.06.001; pmid: 32561270

  11. D. F. Robbianiet al., Convergent antibody responses to
    SARS-CoV-2 in convalescent individuals.Nature 584 , 437– 442
    (2020). doi:10.1038/s41586-020-2456-9; pmid: 32555388

  12. S. Duet al., Structurally resolved SARS-CoV-2 antibody shows
    high efficacy in severely infected hamsters and provides a
    potent cocktail pairing strategy.Cell 183 , 1013–1023.e13 (2020).
    doi:10.1016/j.cell.2020.09.035; pmid: 32970990

  13. Y. Wuet al., A noncompeting pair of human neutralizing
    antibodies block COVID-19 virus binding to its receptor ACE2.
    Science 368 , 1274–1278 (2020). doi:10.1126/science.abc2241;
    pmid: 32404477

  14. T. N. Starr, A. J. Greaney, A. S. Dingens, J. D. Bloom, Complete
    map of SARS-CoV-2 RBD mutations that escape the
    monoclonal antibody LY-CoV555 and its cocktail with
    LY-CoV016.Cell Rep. Med. 2 , 100255 (2021). doi:10.1016/
    j.xcrm.2021.100255; pmid: 33842902

  15. S. Elbe, G. Buckland-Merrett, Data, disease and diplomacy:
    GISAID’s innovative contribution to global health.Glob. Chall. 1 ,
    33 – 46 (2017). doi:10.1002/gch2.1018; pmid: 31565258

  16. Y. Weisblumet al., Escape from neutralizing antibodies by
    SARS-CoV-2 spike protein variants.eLife 9 , e61312 (2020).
    doi:10.7554/eLife.61312; pmid: 33112236

  17. D. Wrappet al., Cryo-EM structure of the 2019-nCoV spike in
    the prefusion conformation.Science 367 , 1260–1263 (2020).
    doi:10.1126/science.abb2507; pmid: 32075877

  18. K. Liuet al., Binding and molecular basis of the bat coronavirus
    RaTG13 virus to ACE2 in humans and other species.Cell 184 ,
    3438 – 3451.e10 (2021). doi:10.1016/j.cell.2021.05.031;
    pmid: 34139177

  19. K. Suryamohanet al., Human ACE2 receptor polymorphisms
    and altered susceptibility to SARS-CoV-2.Commun. Biol.
    4 , 475 (2021). doi:10.1038/s42003-021-02030-3;
    pmid: 33846513

  20. A. R. Mehdipour, G. Hummer, Dual nature of human ACE2
    glycosylation in binding to SARS-CoV-2 spike.Proc. Natl. Acad.
    Sci. U.S.A. 118 , e2100425118 (2021). doi:10.1073/
    pnas.2100425118; pmid: 33903171

  21. X. Zhuet al., Cryo-electron microscopy structures of the
    N501Y SARS-CoV-2 spike protein in complex with ACE2 and
    2 potent neutralizing antibodies.PLOS Biol. 19 , e3001237
    (2021). doi:10.1371/journal.pbio.3001237; pmid: 33914735

  22. R. E. Chenet al., Resistance of SARS-CoV-2 variants to
    neutralization by monoclonal and serum-derived polyclonal
    antibodies.Nat. Med. 27 , 717–726 (2021). doi:10.1038/
    s41591-021-01294-w; pmid: 33664494

  23. A. J. Greaneyet al., Comprehensive mapping of mutations in
    the SARS-CoV-2 receptor-binding domain that affect


recognition by polyclonal human plasma antibodies.
Cell Host Microbe 29 , 463–476.e6 (2021). doi:10.1016/
j.chom.2021.02.003; pmid: 33592168


  1. C. O. Barneset al., SARS-CoV-2 neutralizing antibody
    structures inform therapeutic strategies.Nature 588 , 682– 687
    (2020). doi:10.1038/s41586-020-2852-1; pmid: 33045718

  2. B. E. Joneset al., The neutralizing antibody, LY-CoV555,
    protects against SARS-CoV-2 infection in nonhuman primates.
    Sci. Transl. Med. 13 , eabf1906 (2021). doi:10.1126/
    scitranslmed.abf1906; pmid: 33820835

  3. D. Planaset al., Reduced sensitivity of SARS-CoV-2 variant
    Delta to antibody neutralization.Nature 596 , 276–280 (2021).
    doi:10.1038/s41586-021-03777-9; pmid: 34237773

  4. R. E. Chenet al., In vivo monoclonal antibody efficacy against
    SARS-CoV-2 variant strains.Nature 596 , 103–108 (2021).
    doi:10.1038/s41586-021-03720-y; pmid: 34153975

  5. M. McCallumet al., SARS-CoV-2 immune evasion by the
    B.1.427/B.1.429 variant of concern.Science 373 , 648– 654
    (2021). doi:10.1126/science.abi7994; pmid: 34210893

  6. E. C. Thomsonet al., Circulating SARS-CoV-2 spike N439K
    variants maintain fitness while evading antibody-mediated
    immunity.Cell 184 , 1171–1187.e20 (2021). doi:10.1016/
    j.cell.2021.01.037; pmid: 33621484

  7. L. Wanget al., Ultrapotent antibodies against diverse and
    highly transmissible SARS-CoV-2 variants.Science 373 ,
    eabh1766 (2021). doi:10.1126/science.abh1766;
    pmid: 34210892

  8. M. Yuanet al., Structural and functional ramifications of
    antigenic drift in recent SARS-CoV-2 variants.Science 373 ,
    818 – 823 (2021). doi:10.1126/science.abh1139;
    pmid: 34016740

  9. D. Pintoet al., Cross-neutralization of SARS-CoV-2 by a human
    monoclonal SARS-CoV antibody.Nature 583 , 290– 295
    (2020). doi:10.1038/s41586-020-2349-y; pmid: 32422645

  10. C. G. Rappazzoet al., Broad and potent activity against
    SARS-like viruses by an engineered human monoclonal
    antibody.Science 371 , 823–829 (2021). doi:10.1126/science.
    abf4830; pmid: 33495307

  11. C. Liuet al., Reduced neutralization of SARS-CoV-2 B.1.617 by
    vaccine and convalescent serum.Cell 184 , 4220–4236.e13
    (2021). doi:10.1016/j.cell.2021.06.020; pmid: 34242578

  12. L. R. Badenet al., Efficacy and safety of the mRNA-1273
    SARS-CoV-2 vaccine.N. Engl. J. Med. 384 , 403–416 (2021).
    doi:10.1056/NEJMoa2035389; pmid: 33378609

  13. F. P. Polacket al., Safety and efficacy of the BNT162b2 mRNA
    covid-19 vaccine.N. Engl. J. Med. 383 , 2603–2615 (2020).
    doi:10.1056/NEJMoa2034577; pmid: 33301246

  14. L. A. Jacksonet al., An mRNA vaccine against SARS-CoV-2—
    Preliminary report.N. Engl. J. Med. 383 , 1920–1931 (2020).
    doi:10.1056/NEJMoa2022483; pmid: 32663912

  15. T. G. Ksiazeket al., A novel coronavirus associated with severe
    acute respiratory syndrome.N. Engl. J. Med. 348 , 1953– 1966
    (2003). doi:10.1056/NEJMoa030781; pmid: 12690092

  16. Z. Chenet al., Recombinant modified vaccinia virus Ankara
    expressing the spike glycoprotein of severe acute respiratory
    syndrome coronavirus induces protective neutralizing
    antibodies primarily targeting the receptor binding region.
    J. Virol. 79 , 2678–2688 (2005). doi:10.1128/JVI.79.5.2678-
    2688.2005; pmid: 15708987

  17. Y. Zhuet al., Cross-reactive neutralization of SARS-CoV-2 by
    serum antibodies from recovered SARS patients and
    immunized animals.Sci. Adv. 6 , eabc9999 (2020). doi:
    10.1126/sciadv.abc9999; pmid: 33036961

  18. H. Lvet al., Cross-reactive antibody response between
    SARS-CoV-2 and SARS-CoV infections.Cell Rep. 31 , 107725
    (2020). doi:10.1016/j.celrep.2020.107725

  19. J. Pallesenet al., Immunogenicity and structures of a rationally
    designed prefusion MERS-CoV spike antigen.Proc. Natl. Acad.
    Sci. U.S.A. 114 , E7348–E7357 (2017). doi:10.1073/
    pnas.1707304114; pmid: 28807998

  20. M. Yuanet al., A highly conserved cryptic epitope in the
    receptor binding domains of SARS-CoV-2 and SARS-CoV.
    Science 368 , 630–633 (2020). doi:10.1126/science.abb7269;
    pmid: 32245784

  21. M. A. Tortoriciet al., Broad sarbecovirus neutralization by a
    human monoclonal antibody.Nature 597 , 103–108 (2021).
    doi:10.1038/s41586-021-03817-4; pmid: 34280951

  22. H. Liuet al., Cross-neutralization of a SARS-CoV-2 antibody to
    a functionally conserved site is mediated by avidity.Immunity
    53 , 1272–1280.e5 (2020). doi:10.1016/j.immuni.2020.10.023;
    pmid: 33242394

  23. Z. Lvet al., Structural basis for neutralization of SARS-CoV-2
    and SARS-CoV by a potent therapeutic antibody.Science 369 ,


1505 – 1509 (2020). doi:10.1126/science.abc5881;
pmid: 32703908


  1. D. Liet al., In vitro and in vivo functions of SARS-CoV-2
    infection-enhancing and neutralizing antibodies.Cell 184 ,
    4203 – 4219.e32 (2021). doi:10.1016/j.cell.2021.06.021;
    pmid: 34242577

  2. T. N. Starret al., SARS-CoV-2 RBD antibodies that maximize
    breadth and resistance to escape.Nature 597 , 97– 102
    (2021). doi:10.1038/s41586-021-03807-6; pmid: 34261126

  3. Y. Watanabeet al., Vulnerabilities in coronavirus glycan shields
    despite extensive glycosylation.Nat. Commun. 11 , 2688
    (2020). doi:10.1038/s41467-020-16567-0; pmid: 32461612

  4. O. C. Grant, D. Montgomery, K. Ito, R. J. Woods, Analysis of the
    SARS-CoV-2 spike protein glycan shield reveals implications
    for immune recognition.Sci. Rep. 10 , 14991 (2020).
    doi:10.1038/s41598-020-71748-7; pmid: 32929138

  5. M. F. Boniet al., Evolutionary origins of the SARS-CoV-2
    sarbecovirus lineage responsible for the COVID-19 pandemic.
    Nat. Microbiol. 5 , 1408–1417 (2020). doi:10.1038/s41564-020-
    0771-4; pmid: 32724171

  6. N. K. Hurlburtet al., Structural basis for potent neutralization
    of SARS-CoV-2 and role of antibody affinity maturation.
    Nat. Commun. 11 , 5413 (2020). doi:10.1038/s41467-020-
    19231-9; pmid: 33110068

  7. L. Kanget al., A selective sweep in the Spike gene has driven
    SARS-CoV-2 human adaptation.Cell 184 , 4392–4400.e4
    (2021). doi:10.1016/j.cell.2021.07.007; pmid: 34289344

  8. A. M. Harbisonet al., Fine-tuning the Spike: Role of the nature
    and topology of the glycan shield in the structure and
    dynamics of SARS-CoV-2 S.Chem. Sci.10.1039/D1SC04832E
    (2021). doi:10.1039/D1SC04832E

  9. J. D. Bloom, L. I. Gong, D. Baltimore, Permissive secondary
    mutations enable the evolution of influenza oseltamivir
    resistance.Science 328 , 1272–1275 (2010). doi:10.1126/
    science.1187816; pmid: 20522774

  10. L. Yurkovetskiyet al., Structural and functional analysis of the
    D614G SARS-CoV-2 spike protein variant.Cell 183 , 739–751.e8
    (2020). doi:10.1016/j.cell.2020.09.032; pmid: 32991842

  11. W. Kabsch, XDS.Acta Crystallogr. D 66 , 125–132 (2010).
    doi:10.1107/S0907444909047337; pmid: 20124692

  12. P. R. Evans, G. N. Murshudov, How good are my data and what
    is the resolution?Acta Crystallogr. D 69 , 1204–1214 (2013).
    doi:10.1107/S0907444913000061; pmid: 23793146

  13. G. Bricogne, E. Blanc, M. Brandl, C. Flensburg, P. Keller,
    W. Paciorek, P. Roversi, A. Sharff, O. S. Smart, C. Vonrhein,
    T. O. Womack, BUSTER version 2.10.3 (Global Phasing
    Ltd., 2017).

  14. P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features
    and development ofCoot.Acta Crystallogr. D 66 , 486– 501
    (2010). doi:10.1107/S0907444910007493; pmid: 20383002

  15. P. D. Adamset al.,PHENIX: A comprehensive Python-based
    system for macromolecular structure solution.Acta Crystallogr. D
    66 , 213–221 (2010). doi:10.1107/S0907444909052925;
    pmid: 20124702

  16. S. Q. Zhenget al., MotionCor2: Anisotropic correction of
    beam-induced motion for improved cryo-electron microscopy.
    Nat. Methods 14 , 331–332 (2017). doi:10.1038/nmeth.4193;
    pmid: 28250466

  17. A. Rohou, N. Grigorieff, CTFFIND4: Fast and accurate defocus
    estimation from electron micrographs.J. Struct. Biol. 192 ,
    216 – 221 (2015). doi:10.1016/j.jsb.2015.08.008;
    pmid: 26278980

  18. T. Wagneret al., SPHIRE-crYOLO is a fast and accurate fully
    automated particle picker for cryo-EM.Commun. Biol. 2 , 218
    (2019). doi:10.1038/s42003-019-0437-z; pmid: 31240256

  19. A. Punjani, J. L. Rubinstein, D. J. Fleet, M. A. Brubaker,
    cryoSPARC: Algorithms for rapid unsupervised cryo-EM
    structure determination.Nat. Methods 14 , 290–296 (2017).
    doi:10.1038/nmeth.4169; pmid: 28165473

  20. A. C. Wallset al., Structure, function, and antigenicity of the
    SARS-CoV-2 spike glycoprotein.Cell 181 , 281–292.e6 (2020).
    doi:10.1016/j.cell.2020.02.058; pmid: 32155444

  21. S. Zhanget al., Bat and pangolin coronavirus spike
    glycoprotein structures provide insights into SARS-CoV-2
    evolution.Nat. Commun. 12 , 1607 (2021). doi:10.1038/s41467-
    021-21767-3; pmid: 33707453


ACKNOWLEDGMENTS
This work is based on research conducted at the Northeastern
Collaborative Access Team (NE-CAT) beamlines, which are funded
by the National Institute of General Medical Sciences from the
National Institutes of Health (P30 GM124165). The Pilatus 6M
detector on 24-ID-C beamline is funded by a NIH-ORIP HEI grant

Nabelet al.,Science 375 , eabl6251 (2022) 21 January 2022 9 of 10


RESEARCH | RESEARCH ARTICLE

Free download pdf