134 5Cables
or in equivalent form
sinhD 0
2aD1
2aq
L^20 h^20 (5.33a)CoordinatesxAandxAof the pointsAandBarexADatanh^1
h 0
L 0
D 0
2;xBDxACD 0 : (5.34)The thrust of the cable equalsH D q 0 a. Also, equation of the curve and slope
according to (5.27)are
y.x/Dacoshx
aI tan™.x/Dsinhx
aSlopes at support pointsAandBare
tanADsinhxA
aI tanBDsinhxB
a(5.35)Tension at pointsAandBaccording (5.1), (5.2), and (5.34)are
NADHr
1 Csinh^2xA
aI NBDHr
1 Csinh^2xB
a: (5.36)Example 5.5.Let us consider the cable, which is presented in Fig.5.11. The cable
has following parameters:L 0 D117:7mI D 0 D 100 mI h 0 D57:7mI q 0 D
0:014kN=m. Determine the shape of the cable, thrust, and tension.
Solution.Parameteraof the catenary can be calculated from (5.33a)
sinh100
2aD1
2ap
117:7^2 57:7^2 !aD127:41m:Coordinatexof the supportAisxAD127:41tanh^1 .57:7=117:7/. 1 0 0=2 /D
18:34m.
Slopes at supportsAandB
tanADsinh18:34
127:34D0:1446I sinAD0:1431I cosAD0:9897tanBDsinh18:34C 100
127:34D1:0694I sinBD0:7304I cosBD0:6830:Thrust of the cable isHDq 0 aD0:014127:41D1:7837kN.