182 6 Deflections of Elastic Structures
Fig. 6.22 Design diagram
of the beam and bending
moment diagrams for actual
and unit states
Unit
stateP =1b =l/8 d =l/4
l/8M
(m)a =Pl/8 c =Pl/4Pl/8MP
(kN⋅m)yCΩ0.25l 0.25l 0.25l 0.25lP
EI kEI
Actual
stateAB
DECSolution.Bending moment diagrams in actual and unit states are presented in
Fig.6.24. For computationC D.MpM/=N EI, we have to subdivide bending
moment diagrams on the parts, within which the bending stiffness is constant. These
parts for the left half of the beam areADDl=4andDCDl=4. The Vereshcha-
gin rule for multiplication of diagramsMpandMN within portionADleads to the
following result
C1D1
EI1
2Pl
8l
„ ƒ‚^4 ...
̋2
3l
„ƒ‚...^8
ycDPl^3
768 EI: (a)For portionCDthe trapezoid rule is applied. According to (6.22)wegetC2Dl=4
6 kEI2
6
6
42 Pl
8l
„ ƒ‚^8 ...
2abC 2Pl
4l
„ƒ‚^4 ...
2cdCPl
8l
„ƒ‚^4 ...
adCPl
4l
„ƒ‚^8 ...
cb3
7
7
5 D7
768Pl^3
kEI: (b)Finally, the vertical displacement atCbecomes
CD 2
Pl^3
768 EIC7
768Pl^3
kEI
DPl^3
48 EI
;where D.1=8/C.7=8k/; factor 2 takes into account symmetrical partCEBof the
beam. IfkD 1 ,then D 1.
Example 6.16.A portal frame is subjected to horizontal forceP as shown in
Fig.6.23. The bending stiffness for each member is shown on design diagram. Cal-
culate (a) the horizontal displacement at the rolled supportBand (b) the angle of
rotation at the same pointB.