Advanced Methods of Structural Analysis

(Jacob Rumans) #1

7.4 Computation of Deflections of Redundant Structures 245


ql^216

8

M ql^2
P

l

A
P= 1 l/^2 l

M

q
A B

8

ql^2
RA ql
8
=^30
16 2 8
00 4
6 EI
⎟⎟=






= ⋅ + ⋅ ⋅ − ⋅

×
Δ =

Simpson rule

ver
A l

l ql^2 l ql^2
EIi

MP MP

a

Version 1

l ql^2 ql^2 ql^3
EI

MP M
16 8 48 EI
0 ⋅ 1 + 4 ⋅
6 EI
⎟⎟=


⎜⎜⎝


= ⋅ 1 − ⋅ 1
×
θA=

Version 2
l ql^2 ql^2 ql^3
EI

MP M
A 2 8 48 EI

1
6 EI 16
⎟⎟=


⎜⎜


θ = × = ⋅ − ⋅ 0

M= 1 A
1

1

1/2

M= 1 A
M

M

0 ⋅ 1 + 4 ⋅

b

Fig. 7.16 (a) Computation of vertical displacement at supportA.(b) Computation of slope at
support A. Two versions of unit state


Ve r s i o n 1 :


AD

MPMN
EI

D

l
6 EI


0  1 C 4 

ql^2
16

 1 

ql^2
8

 1


D

ql^3
48 EI

:

Ve r s i o n 2 :


AD

MPMN
EI

D

l
6 EI


0  1 C 4 

ql^2
16



1
2



ql^2
8

 0


D

ql^3
48 EI

:

It easy to check that superposition principle leads to the same result. Indeed, in case
of simply supported beam subjected to uniformly distributed loadqand support
momentMBDql^2 =8, the slope at supportAequals


ADAqCAMBD

ql^3
24 EI



MBl
6 EI

D

ql^3
24 EI



ql^2
8

l
6 EI

D

ql^3
48 EI

:

The reader is invited to check that slope at supportBis zero. For multiplication
of both bending moment diagrams, it is recommended to apply the Simpson’s rule.

Free download pdf