8.2 Canonical Equations of Displacement Method 287
abcq4m 6m5m3m121
Pi6-8i4-5
P
1q i1-32 8qP1527
6
34d0.333EI
r 213 i 4 − 5
l 4 − 5 = 0.333EI0.24EI 0.24EI6 i 1 − 3
l 1 − 3 = 0.24EI3 i4-54 i1-32 i1-3r 21*
M 1r 11
3 i4-5=1.0EI4 i1-3=0.8EI 3 i6-8=0.6EI2 i1-3=0.4EIState 1: The unit angular displacement Z 1 =1
Z 1 =1M 2Z 2 =1*r 12r 223 i 4 − 5
l 4 − 53 i 4 − 5
l 4 − 5
= 0.333EI6 i 1 − 312 i 1 − 3l 1 − 3l^21 − 3= 0.24EIState 2: The unit linear displacementZ 2 =10.111EI
0.096EI
0.096EI= 0.096EI3 i 4 − 5
l^24 − 5
= 0.111EI6 i 1 − 3
l 1 − 36 i 1 − 3
l 1 − 3r 22ef Loaded state5.0 R 2 P
5 q/2 =55.0qR 2 PR 1 PMP^0M 3 =4.1667M 7 = 9.984
M 2 = 2.0833M 5 =15.36 ul ul***gMkNm13.084
1.814 11.34911.27
1.324
8.037Fig. 8.8 (a) Design diagram; (b) Primary system; (c) Specified sections; (d) State 1. Bending mo-
ment diagram due to unit angular displacementZ 1 D 1 and free-body diagram for the calculation
ofr 21 .(e) State 2. Bending moment diagram due to unit linear displacementZ 2 D^1 and free-body
diagram for the calculation ofr 22 .(f) Bending moment diagram in the loaded state and free-body
diagram for the calculation of load reactionR2P.(g) Final bending moment diagram M (kN m)