356 10 Influence Lines Method
Table 10.7Comparison of the force and displacement methods for construction of influence linesComparison criteriaForce methodDisplacement methodPrimary system (PS)Obtained byeliminating redundantconstraintsfroma structureObtained byintroducing additionalconstraintstoa structurePrimary unknowns (PU)Forces(forces and moments), whichsimulateactionofeliminatedconstraintsDisplacements(linear and angular), whichneutralizeaction ofintroducedconstraintsCanonical equations ingeneral formı^11XC 1ı^12X
2
C:::Cı1nXCn1PD0ı^21XC 1ı^22X
2
C:::Cı2nXCn2PD0
Number of canonical equations equals tothe number of PUr^11ZC 1r^12Z
2
C:::Cr1nZ
n
CR1PD0r^21ZC 1r^22Z
2
C:::Cr2nZ
n
CR
2PD0Number of canonical equations equals tothe number of PUCanonical equations in caseof unit moving loadPD1ı^11XC 1ı^12XC 2:::Cı1nXn
Cı1PD0ı^21XC 1ı^22XC 2:::Cı2nX
n
Cı2PD0r^11Z
1
Cr^12ZC 2:::Cr1nZ
n
Cr1PD0r^21Z
1
Cr^22ZC 2:::Cr2nZCnr2PD0Features of coefficients andfree termsıikare numbers;ıiPare functions of load locationrikare numbers;riPare functions of loadlocationPrimary unknownsXare functions of load locationiZare functions of load locationi