Advanced Methods of Structural Analysis

(Jacob Rumans) #1

11.6 Analysis of Continuous Beams 399


The final vector of required bending moments (kNm) is


ESDSE 1 CkAQ TZDEI 0

2 6 6 6 6 6 6 6 6
0:00667
0:00333
0:03
0:03
0:015

3 7 7 7 7 7 7 7 7

CEI 0

2 6 6 6 6 6 6 6 6
0:00313
0:00627
0:0204
0:0126
0:0024

3 7 7 7 7 7 7 7 7

DEI 0

2 6 6 6 6 6 6 6 6
0:0098
0:0096
0:0096
0:0174
0:0174

3 7 7 7 7 7 7 7 7

Corresponding final bending moment diagram is presented in Fig.11.24f.


Example 11.5.Design diagram of the uniform three-span continuous beam is pre-
sented in Fig.11.25a. Construct the influence lines for bending moments at the
supportsBandC(sections 6 and 12, respectively).


Solution.Each span of the beam is divided in equal portions and specified sections
are numerated (0–18). Next we needto show the displacement-load (Z-P)andS-e
diagrams (Fig.11.25a). Unknown momentsS 1 ,S 2 arise at supportBandS 3 ,S 4 at
supportC.


Static matrix TheZ-PandS-ediagrams allow us to constructing the following
equilibrium equations:


P 1 DS 1 CS 2
P 2 DS 3 CS 4

so the static matrix of the structure is


A.24/D


1100
0011

Stiffness matrix Stiffness matrices for each finite element are


k 1 D

EI
l

Œ3 ; k 2 D

EI
l


42
24

; k 3 D

EI
l

Œ3 :

Stiffness matrix of all structure in local coordinates and intermediate complex

kAQ Tare


kQDEI
l

2
6
6
4

3000
0420
0240
0003

3
7
7
5 ;
kAQ TDEI
l

2
6
6
4

3000
0420
0240
0003

3
7
7
5 

2
6
6
4

10
10
01
01

3
7
7
5 D

EI
l

2
6
6
4

30
42
24
03

3
7
7
5
Free download pdf