11.6 Analysis of Continuous Beams 399
The final vector of required bending moments (kNm) is
ESDSE 1 CkAQ TZDEI 0
2 6 6 6 6 6 6 6 6
0:00667
0:00333
0:03
0:03
0:015
3 7 7 7 7 7 7 7 7
CEI 0
2 6 6 6 6 6 6 6 6
0:00313
0:00627
0:0204
0:0126
0:0024
3 7 7 7 7 7 7 7 7
DEI 0
2 6 6 6 6 6 6 6 6
0:0098
0:0096
0:0096
0:0174
0:0174
3 7 7 7 7 7 7 7 7
Corresponding final bending moment diagram is presented in Fig.11.24f.
Example 11.5.Design diagram of the uniform three-span continuous beam is pre-
sented in Fig.11.25a. Construct the influence lines for bending moments at the
supportsBandC(sections 6 and 12, respectively).
Solution.Each span of the beam is divided in equal portions and specified sections
are numerated (0–18). Next we needto show the displacement-load (Z-P)andS-e
diagrams (Fig.11.25a). Unknown momentsS 1 ,S 2 arise at supportBandS 3 ,S 4 at
supportC.
Static matrix TheZ-PandS-ediagrams allow us to constructing the following
equilibrium equations:
P 1 DS 1 CS 2
P 2 DS 3 CS 4
so the static matrix of the structure is
A.24/D
1100
0011
Stiffness matrix Stiffness matrices for each finite element are
k 1 D
EI
l
Œ3 ; k 2 D
EI
l
42
24
; k 3 D
EI
l
Œ3 :
Stiffness matrix of all structure in local coordinates and intermediate complex
kAQ Tare
kQDEI
l
2
6
6
4
3000
0420
0240
0003
3
7
7
5 ;
kAQ TDEI
l
2
6
6
4
3000
0420
0240
0003
3
7
7
5
2
6
6
4
10
10
01
01
3
7
7
5 D
EI
l
2
6
6
4
30
42
24
03
3
7
7
5