11.7 Analysis of Redundant Frames 405
moments are zero. Therefore, the vector offixed-end moments (vector of internal
forces of the first state) at sections 1–3 on the basis of theMP^0 andS-ediagrams
becomesSE 1 D
000
̆T
.
The static matrix is constructed on the basis of theZ-PandS-ediagrams.
Figure11.26f shows the free body diagram for joint 1 subjected to possible mo-
mentP 1 and two unknown internal forces in vicinity of joint 1 (bending moments
S 2 andS 3 /. Equilibrium condition isP 1 DS 2 CS 3.
It is obvious that
P 2 D
S 1
h
S 2
h
:
Thus, the static matrix becomes
AD
011
1=h 1=h 0
Stiffness matrix for each finite element and stiffness matrixkQfor all structure in
local coordinates are
k 1 D
EI 1
l 1
42
24
D
EI
h
42
24
;k 2 D
EI 2
l 2
Œ3D
EI
l
Œ3
Thus, the stiffness matrices of the structure in the local coordinates
kQD
k 1 0
0 k 2
D
EI
h
2
4
420
240
003
3
5
Matrix procedures:Intermediate matrix complex
kAQ TDEI
h
2
4
420
240
003
3
(^5)
2
4
0 1=h
1 1=h
10
3
(^5) DEI
h
2
4
2 6=h
4 6=h
30
3
5
Stiffness matrix for whole structure in global coordinates
KDAkAQ
T
D
011
1= h 1= h 0
EI
h
2
4
2 6= h
4 6= h
30
3
5
„ ƒ‚ ...
kAQT
D
EI
h
7 6= h
6=h^2 12 = h^2
For 2 2 matrix, we can use the following useful relationship: if