11.7 Analysis of Redundant Frames 409
k 2 D
EI 2
l 2
Œ3D
2 EI
10
Œ3D
EI
5
Œ3 ;
k 3 D
EI 3
l 3
Œ3D
EI
3
Œ3D
EI
5
Œ5 :
For whole structure the stiffness matrix in local coordinates is
kQD
2
4
k 1 00
0 k 2 0
00 k 3
3
(^5) DEI
5
2
6
6
4
4200
2400
0030
0005
3
7
7
5
Matrix procedures.For whole structure the stiffness matrix in global coordinates
K D AkAQ
T
D
0111
0:2 0:2 0 0:333
EI
5
2
6
6
4
4200
2400
0030
0005
3
7
7
5
2
6
6
4
0 0:2
1 0:2
10
1 0:333
3
7
7
5
D EI
2:4 0:093
0:093 0:207
The entries of this matrix are unit reactions of the displacement method in canonical
form (Example 8.2).
The determinant of this matrix is detKD0:48815, so the inverse matrix
K^1 D
1
EI
0:4241 0:1905
0:1905 4:9165
:
The matrix resolving equationKZEDPEallows us to find the vector of unknown
displacements
ZED
Z 1 .rad/
Z 2 .m/
DK^1 PE D
1
EI
0:4241 0:1905
0:1905 4:9165
11:193
5
D
1
EI
3:7944
22:452
These values present the angle of rotation of the rigid joint and linear displacement
of the cross-bar; they have been obtained previously by the displacement method
(Example 8.2).