412 11 Matrix Stiffness Method
Thus, the static matrix becomes
A.56/D
2 6 6 6 6 6 6 6 4
0 10 0:707 0 0
0000:70710
1000:70700
00 0:707 0 10
0 0 0:707 0 0 1
3 7 7 7 7 7 7 7 5
The stiffnesses of each member in local coordinates are
k 1 D
EA
l 1
D
EA
d
Œ1I k 2 Dk 5 Dk 6 Dk 1 D
EA
d
Œ1I
k 3 Dk 4 D
EA
d
p
2
Œ1D
EA
d
Œ0:707 :
So stiffness matrix of all structure in local coordinates is
kQDEA
d
2 6 6 6 6 6 6 6 4
10 0 0 00
01 0 0 00
0 0 0:707 0 0 0
0000:70700
00 0 0 10
00 0 0 01
3 7 7 7 7 7 7 7 5
Stiffness matrix of all structure in global coordinates is
KDAkAQ
T
D
EA
d
2 6 6 6 6 4
1:3534 0:3534 0:3534 0 0
0:3534 1:3534 0:3534 10
0:3534 0:3534 1:3534 0 0
0 1 0 1:3534 0:3534
000 0:3534 1:3534
3 7 7 7 7 5
Inverse matrix may be calculated by computer using a standard program. This
matrix is
K^1 D
d
EA
2 6 6 6 6 6 4
0:8965 0:5 0:1035 0:3965 0:1035
0:5 2:4149 0:5 1:9149 0:5
0:1035 0:5 0:89655 0:3965 0:1035
0:3965 1:9149 0:3965 2:313 0:6035
0:1035 0:5 0:1035 0:6035 0:8965
3 7 7 7 7 7 5